{"title":"用于核苷酸和氨基酸搜索的优化FM索引库。","authors":"Tim Anderson, Travis J Wheeler","doi":"10.1186/s13015-021-00204-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Pattern matching is a key step in a variety of biological sequence analysis pipelines. The FM-index is a compressed data structure for pattern matching, with search run time that is independent of the length of the database text. Implementation of the FM-index is reasonably complicated, so that increased adoption will be aided by the availability of a fast and flexible FM-index library.</p><p><strong>Results: </strong>We present AvxWindowedFMindex (AWFM-index), a lightweight, open-source, thread-parallel FM-index library written in C that is optimized for indexing nucleotide and amino acid sequences. AWFM-index introduces a new approach to storing FM-index data in a strided bit-vector format that enables extremely efficient computation of the FM-index occurrence function via AVX2 bitwise instructions, and combines this with optional on-disk storage of the index's suffix array and a cache-efficient lookup table for partial k-mer searches. The AWFM-index performs exact match count and locate queries faster than SeqAn3's FM-index implementation across a range of comparable memory footprints. When optimized for speed, AWFM-index is [Formula: see text]2-4x faster than SeqAn3 for nucleotide search, and [Formula: see text]2-6x faster for amino acid search; it is also [Formula: see text]4x faster with similar memory footprint when storing the suffix array in on-disk SSD storage.</p><p><strong>Conclusions: </strong>AWFM-index is easy to incorporate into bioinformatics software, offers run-time performance parameterization, and provides clients with FM-index functionality at both a high-level (count or locate all instances of a query string) and low-level (step-wise control of the FM-index backward-search process). The open-source library is available for download at https://github.com/TravisWheelerLab/AvxWindowFmIndex.</p>","PeriodicalId":50823,"journal":{"name":"Algorithms for Molecular Biology","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8719400/pdf/","citationCount":"3","resultStr":"{\"title\":\"An optimized FM-index library for nucleotide and amino acid search.\",\"authors\":\"Tim Anderson, Travis J Wheeler\",\"doi\":\"10.1186/s13015-021-00204-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Pattern matching is a key step in a variety of biological sequence analysis pipelines. The FM-index is a compressed data structure for pattern matching, with search run time that is independent of the length of the database text. Implementation of the FM-index is reasonably complicated, so that increased adoption will be aided by the availability of a fast and flexible FM-index library.</p><p><strong>Results: </strong>We present AvxWindowedFMindex (AWFM-index), a lightweight, open-source, thread-parallel FM-index library written in C that is optimized for indexing nucleotide and amino acid sequences. AWFM-index introduces a new approach to storing FM-index data in a strided bit-vector format that enables extremely efficient computation of the FM-index occurrence function via AVX2 bitwise instructions, and combines this with optional on-disk storage of the index's suffix array and a cache-efficient lookup table for partial k-mer searches. The AWFM-index performs exact match count and locate queries faster than SeqAn3's FM-index implementation across a range of comparable memory footprints. When optimized for speed, AWFM-index is [Formula: see text]2-4x faster than SeqAn3 for nucleotide search, and [Formula: see text]2-6x faster for amino acid search; it is also [Formula: see text]4x faster with similar memory footprint when storing the suffix array in on-disk SSD storage.</p><p><strong>Conclusions: </strong>AWFM-index is easy to incorporate into bioinformatics software, offers run-time performance parameterization, and provides clients with FM-index functionality at both a high-level (count or locate all instances of a query string) and low-level (step-wise control of the FM-index backward-search process). The open-source library is available for download at https://github.com/TravisWheelerLab/AvxWindowFmIndex.</p>\",\"PeriodicalId\":50823,\"journal\":{\"name\":\"Algorithms for Molecular Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2021-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8719400/pdf/\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algorithms for Molecular Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13015-021-00204-6\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algorithms for Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13015-021-00204-6","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
An optimized FM-index library for nucleotide and amino acid search.
Background: Pattern matching is a key step in a variety of biological sequence analysis pipelines. The FM-index is a compressed data structure for pattern matching, with search run time that is independent of the length of the database text. Implementation of the FM-index is reasonably complicated, so that increased adoption will be aided by the availability of a fast and flexible FM-index library.
Results: We present AvxWindowedFMindex (AWFM-index), a lightweight, open-source, thread-parallel FM-index library written in C that is optimized for indexing nucleotide and amino acid sequences. AWFM-index introduces a new approach to storing FM-index data in a strided bit-vector format that enables extremely efficient computation of the FM-index occurrence function via AVX2 bitwise instructions, and combines this with optional on-disk storage of the index's suffix array and a cache-efficient lookup table for partial k-mer searches. The AWFM-index performs exact match count and locate queries faster than SeqAn3's FM-index implementation across a range of comparable memory footprints. When optimized for speed, AWFM-index is [Formula: see text]2-4x faster than SeqAn3 for nucleotide search, and [Formula: see text]2-6x faster for amino acid search; it is also [Formula: see text]4x faster with similar memory footprint when storing the suffix array in on-disk SSD storage.
Conclusions: AWFM-index is easy to incorporate into bioinformatics software, offers run-time performance parameterization, and provides clients with FM-index functionality at both a high-level (count or locate all instances of a query string) and low-level (step-wise control of the FM-index backward-search process). The open-source library is available for download at https://github.com/TravisWheelerLab/AvxWindowFmIndex.
期刊介绍:
Algorithms for Molecular Biology publishes articles on novel algorithms for biological sequence and structure analysis, phylogeny reconstruction, and combinatorial algorithms and machine learning.
Areas of interest include but are not limited to: algorithms for RNA and protein structure analysis, gene prediction and genome analysis, comparative sequence analysis and alignment, phylogeny, gene expression, machine learning, and combinatorial algorithms.
Where appropriate, manuscripts should describe applications to real-world data. However, pure algorithm papers are also welcome if future applications to biological data are to be expected, or if they address complexity or approximation issues of novel computational problems in molecular biology. Articles about novel software tools will be considered for publication if they contain some algorithmically interesting aspects.