{"title":"利用大蓬树皮提取物制备氧化锌和镍掺杂氧化锌纳米颗粒的生物合成、表征和抗菌活性","authors":"Gezahegn Faye, Tola Jebessa, Tilahun Wubalem","doi":"10.1049/nbt2.12072","DOIUrl":null,"url":null,"abstract":"<p>Biosynthesis of metallic oxide nanoparticles is being used and preferred over physical and chemical methods of synthesis since it is simple, inexpensive, environmentally friendly, and green. The aim of this study was to synthesise ZnO and nickel doped ZnO nanoparticles using <i>Euphorbia abyssinica</i> bark extract for antimicrobial activity studies via agar disk diffusion method against some selected microbes. The synthesised nanoparticles were characterised using X-ray diffraction (XRD), ultraviolet–visible spectroscopy, and Fourier transform infrared spectroscopy. The study results revealed that the biosynthesised nanoparticles had good crystalline nature, with crystal sizes in the range of nanoparticles and structures of hexagonal wurtzite. Both undoped ZnO and nickel doped ZnO nanoparticles demonstrated antibacterial and antifungal activity against four bacterial strains and two fungal genus. Generally, nickel doped ZnO NPs were found to possess more antimicrobial activities than undoped ZnO NPs. Specially, 4% and 5% nickel doped ZnO NPs showed significantly enhanced activity against <i>Enterococcus faecalis, Staphylococcus aureus, Aspergillus</i> and <i>Fusarium</i>.</p>","PeriodicalId":13393,"journal":{"name":"IET nanobiotechnology","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2021-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8806118/pdf/","citationCount":"10","resultStr":"{\"title\":\"Biosynthesis, characterisation and antimicrobial activity of zinc oxide and nickel doped zinc oxide nanoparticles using Euphorbia abyssinica bark extract\",\"authors\":\"Gezahegn Faye, Tola Jebessa, Tilahun Wubalem\",\"doi\":\"10.1049/nbt2.12072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Biosynthesis of metallic oxide nanoparticles is being used and preferred over physical and chemical methods of synthesis since it is simple, inexpensive, environmentally friendly, and green. The aim of this study was to synthesise ZnO and nickel doped ZnO nanoparticles using <i>Euphorbia abyssinica</i> bark extract for antimicrobial activity studies via agar disk diffusion method against some selected microbes. The synthesised nanoparticles were characterised using X-ray diffraction (XRD), ultraviolet–visible spectroscopy, and Fourier transform infrared spectroscopy. The study results revealed that the biosynthesised nanoparticles had good crystalline nature, with crystal sizes in the range of nanoparticles and structures of hexagonal wurtzite. Both undoped ZnO and nickel doped ZnO nanoparticles demonstrated antibacterial and antifungal activity against four bacterial strains and two fungal genus. Generally, nickel doped ZnO NPs were found to possess more antimicrobial activities than undoped ZnO NPs. Specially, 4% and 5% nickel doped ZnO NPs showed significantly enhanced activity against <i>Enterococcus faecalis, Staphylococcus aureus, Aspergillus</i> and <i>Fusarium</i>.</p>\",\"PeriodicalId\":13393,\"journal\":{\"name\":\"IET nanobiotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2021-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8806118/pdf/\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET nanobiotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/nbt2.12072\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET nanobiotechnology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/nbt2.12072","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Biosynthesis, characterisation and antimicrobial activity of zinc oxide and nickel doped zinc oxide nanoparticles using Euphorbia abyssinica bark extract
Biosynthesis of metallic oxide nanoparticles is being used and preferred over physical and chemical methods of synthesis since it is simple, inexpensive, environmentally friendly, and green. The aim of this study was to synthesise ZnO and nickel doped ZnO nanoparticles using Euphorbia abyssinica bark extract for antimicrobial activity studies via agar disk diffusion method against some selected microbes. The synthesised nanoparticles were characterised using X-ray diffraction (XRD), ultraviolet–visible spectroscopy, and Fourier transform infrared spectroscopy. The study results revealed that the biosynthesised nanoparticles had good crystalline nature, with crystal sizes in the range of nanoparticles and structures of hexagonal wurtzite. Both undoped ZnO and nickel doped ZnO nanoparticles demonstrated antibacterial and antifungal activity against four bacterial strains and two fungal genus. Generally, nickel doped ZnO NPs were found to possess more antimicrobial activities than undoped ZnO NPs. Specially, 4% and 5% nickel doped ZnO NPs showed significantly enhanced activity against Enterococcus faecalis, Staphylococcus aureus, Aspergillus and Fusarium.
期刊介绍:
Electrical and electronic engineers have a long and illustrious history of contributing new theories and technologies to the biomedical sciences. This includes the cable theory for understanding the transmission of electrical signals in nerve axons and muscle fibres; dielectric techniques that advanced the understanding of cell membrane structures and membrane ion channels; electron and atomic force microscopy for investigating cells at the molecular level.
Other engineering disciplines, along with contributions from the biological, chemical, materials and physical sciences, continue to provide groundbreaking contributions to this subject at the molecular and submolecular level. Our subject now extends from single molecule measurements using scanning probe techniques, through to interactions between cells and microstructures, micro- and nano-fluidics, and aspects of lab-on-chip technologies. The primary aim of IET Nanobiotechnology is to provide a vital resource for academic and industrial researchers operating in this exciting cross-disciplinary activity. We can only achieve this by publishing cutting edge research papers and expert review articles from the international engineering and scientific community. To attract such contributions we will exercise a commitment to our authors by ensuring that their manuscripts receive rapid constructive peer opinions and feedback across interdisciplinary boundaries.
IET Nanobiotechnology covers all aspects of research and emerging technologies including, but not limited to:
Fundamental theories and concepts applied to biomedical-related devices and methods at the micro- and nano-scale (including methods that employ electrokinetic, electrohydrodynamic, and optical trapping techniques)
Micromachining and microfabrication tools and techniques applied to the top-down approach to nanobiotechnology
Nanomachining and nanofabrication tools and techniques directed towards biomedical and biotechnological applications (e.g. applications of atomic force microscopy, scanning probe microscopy and related tools)
Colloid chemistry applied to nanobiotechnology (e.g. cosmetics, suntan lotions, bio-active nanoparticles)
Biosynthesis (also known as green synthesis) of nanoparticles; to be considered for publication, research papers in this area must be directed principally towards biomedical research and especially if they encompass in vivo models or proofs of concept. We welcome papers that are application-orientated or offer new concepts of substantial biomedical importance
Techniques for probing cell physiology, cell adhesion sites and cell-cell communication
Molecular self-assembly, including concepts of supramolecular chemistry, molecular recognition, and DNA nanotechnology
Societal issues such as health and the environment
Special issues. Call for papers:
Smart Nanobiosensors for Next-generation Biomedical Applications - https://digital-library.theiet.org/files/IET_NBT_CFP_SNNBA.pdf
Selected extended papers from the International conference of the 19th Asian BioCeramic Symposium - https://digital-library.theiet.org/files/IET_NBT_CFP_ABS.pdf