Irem Gumus Ozcan, Ozkan Onal, Aysun Ozdemirkan, Ali Saltali, Mehmet Sari
{"title":"不同新鲜气体流量和不同麻醉剂对手术患者气道温度和湿度的影响:一项前瞻性观察研究。","authors":"Irem Gumus Ozcan, Ozkan Onal, Aysun Ozdemirkan, Ali Saltali, Mehmet Sari","doi":"10.4103/2045-9912.330691","DOIUrl":null,"url":null,"abstract":"<p><p>This study was aimed to investigate the effects of different fresh gas (oxygen + air) flow rates and different anesthetics on airway temperature and humidity when using the same anesthesia machine in patients undergoing general anesthesia. In this prospective, observational study, 240 patients with American Society of Anesthesiologists (ASA) I-II between the age of 18-65 years to be operated under general anesthesia were enrolled and divided into two groups according to the fresh gas flow rate (3-6 L/min). Each of the two main groups was further divided into three subgroups according to the administered anesthetic gases and drugs. The resulting six groups were further divided into two subgroups according to whether the heat and humidity exchanger filter (HME) was attached to the breathing circuit, and the study was carried out on a total of 12 groups. The temperature and humidity of the inspired air were recorded every 10 minutes using an electronic thermo-hygrometer. The inspired temperature and humidity were greater in patients ventilated at 3 L/min compared to the 6 L/min group and in HME (+) patients compared to HME (-), regardless of the type of anesthetics. HME application makes the air more physiological for the respiratory tract by increasing the temperature and humidity of the air regardless of the anesthetic agent. This study was approved by Ethics Committee Review of Selcuk University Faculty of Medicine (No. 2017/261) in September 2017, and was registered in the Clinical Trial Registry (identifier No. NCT04204746) on December 19, 2019.</p>","PeriodicalId":18559,"journal":{"name":"Medical Gas Research","volume":"12 3","pages":"83-90"},"PeriodicalIF":3.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/7a/34/MGR-12-83.PMC8690851.pdf","citationCount":"1","resultStr":"{\"title\":\"Effects of different fresh gas flows and different anesthetics on airway temperature and humidity in surgical patients: a prospective observational study.\",\"authors\":\"Irem Gumus Ozcan, Ozkan Onal, Aysun Ozdemirkan, Ali Saltali, Mehmet Sari\",\"doi\":\"10.4103/2045-9912.330691\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study was aimed to investigate the effects of different fresh gas (oxygen + air) flow rates and different anesthetics on airway temperature and humidity when using the same anesthesia machine in patients undergoing general anesthesia. In this prospective, observational study, 240 patients with American Society of Anesthesiologists (ASA) I-II between the age of 18-65 years to be operated under general anesthesia were enrolled and divided into two groups according to the fresh gas flow rate (3-6 L/min). Each of the two main groups was further divided into three subgroups according to the administered anesthetic gases and drugs. The resulting six groups were further divided into two subgroups according to whether the heat and humidity exchanger filter (HME) was attached to the breathing circuit, and the study was carried out on a total of 12 groups. The temperature and humidity of the inspired air were recorded every 10 minutes using an electronic thermo-hygrometer. The inspired temperature and humidity were greater in patients ventilated at 3 L/min compared to the 6 L/min group and in HME (+) patients compared to HME (-), regardless of the type of anesthetics. HME application makes the air more physiological for the respiratory tract by increasing the temperature and humidity of the air regardless of the anesthetic agent. This study was approved by Ethics Committee Review of Selcuk University Faculty of Medicine (No. 2017/261) in September 2017, and was registered in the Clinical Trial Registry (identifier No. NCT04204746) on December 19, 2019.</p>\",\"PeriodicalId\":18559,\"journal\":{\"name\":\"Medical Gas Research\",\"volume\":\"12 3\",\"pages\":\"83-90\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/7a/34/MGR-12-83.PMC8690851.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical Gas Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4103/2045-9912.330691\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Gas Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/2045-9912.330691","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Effects of different fresh gas flows and different anesthetics on airway temperature and humidity in surgical patients: a prospective observational study.
This study was aimed to investigate the effects of different fresh gas (oxygen + air) flow rates and different anesthetics on airway temperature and humidity when using the same anesthesia machine in patients undergoing general anesthesia. In this prospective, observational study, 240 patients with American Society of Anesthesiologists (ASA) I-II between the age of 18-65 years to be operated under general anesthesia were enrolled and divided into two groups according to the fresh gas flow rate (3-6 L/min). Each of the two main groups was further divided into three subgroups according to the administered anesthetic gases and drugs. The resulting six groups were further divided into two subgroups according to whether the heat and humidity exchanger filter (HME) was attached to the breathing circuit, and the study was carried out on a total of 12 groups. The temperature and humidity of the inspired air were recorded every 10 minutes using an electronic thermo-hygrometer. The inspired temperature and humidity were greater in patients ventilated at 3 L/min compared to the 6 L/min group and in HME (+) patients compared to HME (-), regardless of the type of anesthetics. HME application makes the air more physiological for the respiratory tract by increasing the temperature and humidity of the air regardless of the anesthetic agent. This study was approved by Ethics Committee Review of Selcuk University Faculty of Medicine (No. 2017/261) in September 2017, and was registered in the Clinical Trial Registry (identifier No. NCT04204746) on December 19, 2019.
期刊介绍:
Medical Gas Research is an open access journal which publishes basic, translational, and clinical research focusing on the neurobiology as well as multidisciplinary aspects of medical gas research and their applications to related disorders. The journal covers all areas of medical gas research, but also has several special sections. Authors can submit directly to these sections, whose peer-review process is overseen by our distinguished Section Editors: Inert gases - Edited by Xuejun Sun and Mark Coburn, Gasotransmitters - Edited by Atsunori Nakao and John Calvert, Oxygen and diving medicine - Edited by Daniel Rossignol and Ke Jian Liu, Anesthetic gases - Edited by Richard Applegate and Zhongcong Xie, Medical gas in other fields of biology - Edited by John Zhang. Medical gas is a large family including oxygen, hydrogen, carbon monoxide, carbon dioxide, nitrogen, xenon, hydrogen sulfide, nitrous oxide, carbon disulfide, argon, helium and other noble gases. These medical gases are used in multiple fields of clinical practice and basic science research including anesthesiology, hyperbaric oxygen medicine, diving medicine, internal medicine, emergency medicine, surgery, and many basic sciences disciplines such as physiology, pharmacology, biochemistry, microbiology and neurosciences. Due to the unique nature of medical gas practice, Medical Gas Research will serve as an information platform for educational and technological advances in the field of medical gas.