肝素/硫酸肝素寡糖的合成策略:2000-至今。

Steven B Dulaney, Xuefei Huang
{"title":"肝素/硫酸肝素寡糖的合成策略:2000-至今。","authors":"Steven B Dulaney,&nbsp;Xuefei Huang","doi":"10.1016/bs.accb.2021.11.003","DOIUrl":null,"url":null,"abstract":"<p><p>Heparin and heparan sulfate are members of the glycosaminoglycan family that are involved in a multitude of biological processes. The great interests in the anticoagulant properties of heparin have stimulated major advances in synthetic strategies toward clinically effective analogues, as demonstrated importantly by the approval of the fully synthetic pentasaccharide fragment, termed fondaparinux (Arixtra®), of the heparin macromolecule for treatment of deep-vein thrombosis. Given the highly complex nature of heparin and heparan sulfate, the chemical synthesis of their components is a challenging endeavor. In the past decade, multiple approaches have been developed to improve the overall synthetic efficiency. New strategies have emerged that can generate libraries of oligosaccharide components of heparin and heparan sulfate. This article discusses recent developments in the assembly of heparin and heparan sulfate oligosaccharides and the associated challenges in their synthesis.</p>","PeriodicalId":7215,"journal":{"name":"Advances in carbohydrate chemistry and biochemistry","volume":"80 ","pages":"121-164"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strategies in Synthesis of Heparin/Heparan Sulfate Oligosaccharides: 2000-Present.\",\"authors\":\"Steven B Dulaney,&nbsp;Xuefei Huang\",\"doi\":\"10.1016/bs.accb.2021.11.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Heparin and heparan sulfate are members of the glycosaminoglycan family that are involved in a multitude of biological processes. The great interests in the anticoagulant properties of heparin have stimulated major advances in synthetic strategies toward clinically effective analogues, as demonstrated importantly by the approval of the fully synthetic pentasaccharide fragment, termed fondaparinux (Arixtra®), of the heparin macromolecule for treatment of deep-vein thrombosis. Given the highly complex nature of heparin and heparan sulfate, the chemical synthesis of their components is a challenging endeavor. In the past decade, multiple approaches have been developed to improve the overall synthetic efficiency. New strategies have emerged that can generate libraries of oligosaccharide components of heparin and heparan sulfate. This article discusses recent developments in the assembly of heparin and heparan sulfate oligosaccharides and the associated challenges in their synthesis.</p>\",\"PeriodicalId\":7215,\"journal\":{\"name\":\"Advances in carbohydrate chemistry and biochemistry\",\"volume\":\"80 \",\"pages\":\"121-164\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in carbohydrate chemistry and biochemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/bs.accb.2021.11.003\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Chemistry\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in carbohydrate chemistry and biochemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/bs.accb.2021.11.003","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 0

摘要

肝素和硫酸肝素是糖胺聚糖家族的成员,参与了许多生物过程。对肝素抗凝特性的极大兴趣刺激了临床有效类似物的合成策略的重大进展,重要的是肝素大分子的全合成五糖片段,称为fondaparinux (Arixtra®),用于治疗深静脉血栓。鉴于肝素和硫酸肝素高度复杂的性质,其成分的化学合成是一项具有挑战性的努力。在过去的十年中,已经开发了多种方法来提高综合合成效率。新的策略已经出现,可以产生肝素和硫酸肝素的低聚糖成分的文库。本文讨论了肝素和硫酸肝素寡糖组装的最新进展及其合成中的相关挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Strategies in Synthesis of Heparin/Heparan Sulfate Oligosaccharides: 2000-Present.

Heparin and heparan sulfate are members of the glycosaminoglycan family that are involved in a multitude of biological processes. The great interests in the anticoagulant properties of heparin have stimulated major advances in synthetic strategies toward clinically effective analogues, as demonstrated importantly by the approval of the fully synthetic pentasaccharide fragment, termed fondaparinux (Arixtra®), of the heparin macromolecule for treatment of deep-vein thrombosis. Given the highly complex nature of heparin and heparan sulfate, the chemical synthesis of their components is a challenging endeavor. In the past decade, multiple approaches have been developed to improve the overall synthetic efficiency. New strategies have emerged that can generate libraries of oligosaccharide components of heparin and heparan sulfate. This article discusses recent developments in the assembly of heparin and heparan sulfate oligosaccharides and the associated challenges in their synthesis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in carbohydrate chemistry and biochemistry
Advances in carbohydrate chemistry and biochemistry 生物-生化与分子生物学
CiteScore
2.20
自引率
0.00%
发文量
0
期刊介绍: Advances in Carbohydrate Chemistry and Biochemistry has provided, since its inception in 1945, critical and informative articles written by research specialists that integrate the industrial, analytical, and technological aspects of biochemistry, organic chemistry, and instrumentation methodology to the study of carbohydrates. Its articles present a definitive interpretation of the current status and future trends in carbohydrate chemistry and biochemistry.
期刊最新文献
Towards one-pot selective synthesis of cyclic oligosaccharides. Pseudo-glycoconjugates with a C-glycoside linkage. Conformationally restricted donors for stereoselective glycosylation. Boron-mediated aglycon delivery (BMAD) for the stereoselective synthesis of 1,2-cis glycosides. Therapeutic in vivo synthetic chemistry using an artificial metalloenzyme with glycosylated human serum albumin.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1