{"title":"结合计算化学和晶体学来更好地理解纤维素的结构。","authors":"Alfred D French","doi":"10.1016/bs.accb.2021.11.002","DOIUrl":null,"url":null,"abstract":"<p><p>The approaches in this article seek to enhance understanding of cellulose at the molecular level, independent of the source and the particular crystalline form of cellulose. Four main areas of structure research are reviewed. Initially, the molecular shape is inferred from the crystal structures of many small molecules that have β-(1→4) linkages. Then, conformational analyses with potential energy calculations of cellobiose are covered, followed by the use of Atoms-In-Molecules theory to learn about interactions in experimental and theoretical structures. The last section covers models of cellulose nanoparticles. Controversies addressed include the stability of twofold screw-axis conformations, the influence of different computational methods, the predictability of crystalline conformations by studies of isolated molecules, and the twisting of model cellulose crystals.</p>","PeriodicalId":7215,"journal":{"name":"Advances in carbohydrate chemistry and biochemistry","volume":"80 ","pages":"15-93"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Combining Computational Chemistry and Crystallography for a Better Understanding of the Structure of Cellulose.\",\"authors\":\"Alfred D French\",\"doi\":\"10.1016/bs.accb.2021.11.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The approaches in this article seek to enhance understanding of cellulose at the molecular level, independent of the source and the particular crystalline form of cellulose. Four main areas of structure research are reviewed. Initially, the molecular shape is inferred from the crystal structures of many small molecules that have β-(1→4) linkages. Then, conformational analyses with potential energy calculations of cellobiose are covered, followed by the use of Atoms-In-Molecules theory to learn about interactions in experimental and theoretical structures. The last section covers models of cellulose nanoparticles. Controversies addressed include the stability of twofold screw-axis conformations, the influence of different computational methods, the predictability of crystalline conformations by studies of isolated molecules, and the twisting of model cellulose crystals.</p>\",\"PeriodicalId\":7215,\"journal\":{\"name\":\"Advances in carbohydrate chemistry and biochemistry\",\"volume\":\"80 \",\"pages\":\"15-93\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in carbohydrate chemistry and biochemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/bs.accb.2021.11.002\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Chemistry\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in carbohydrate chemistry and biochemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/bs.accb.2021.11.002","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Chemistry","Score":null,"Total":0}
Combining Computational Chemistry and Crystallography for a Better Understanding of the Structure of Cellulose.
The approaches in this article seek to enhance understanding of cellulose at the molecular level, independent of the source and the particular crystalline form of cellulose. Four main areas of structure research are reviewed. Initially, the molecular shape is inferred from the crystal structures of many small molecules that have β-(1→4) linkages. Then, conformational analyses with potential energy calculations of cellobiose are covered, followed by the use of Atoms-In-Molecules theory to learn about interactions in experimental and theoretical structures. The last section covers models of cellulose nanoparticles. Controversies addressed include the stability of twofold screw-axis conformations, the influence of different computational methods, the predictability of crystalline conformations by studies of isolated molecules, and the twisting of model cellulose crystals.
期刊介绍:
Advances in Carbohydrate Chemistry and Biochemistry has provided, since its inception in 1945, critical and informative articles written by research specialists that integrate the industrial, analytical, and technological aspects of biochemistry, organic chemistry, and instrumentation methodology to the study of carbohydrates. Its articles present a definitive interpretation of the current status and future trends in carbohydrate chemistry and biochemistry.