{"title":"农药对鸟类的急性毒性和代谢。","authors":"Toshiyuki Katagi, Takuo Fujisawa","doi":"10.1584/jpestics.D21-028","DOIUrl":null,"url":null,"abstract":"<p><p>The median lethal dose of pesticide in acute oral toxicity, used as a conservative index in avian risk assessment, varies by the species with differences of less than one order of magnitude, depending on body size, feeding habit, and metabolic enzyme activity. The profiles of pesticide metabolism in birds with characteristic conjugations are basically common to those in mammals, but less information is available on their relevant enzymes. The higher toxicity of some pesticides in birds than in mammals is due to the lower activity of avian metabolic enzymes. The bioaccumulation in birds is limited for very hydrophobic pesticides resistant to metabolic degradation. Several <i>in silico</i> approaches using the descriptors of a pesticide molecule have recently been employed to estimate the profiles of acute oral toxicity and bioaccumulation.</p>","PeriodicalId":16712,"journal":{"name":"Journal of Pesticide Science","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2021-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/42/85/jps-46-4-D21-028.PMC8640698.pdf","citationCount":"4","resultStr":"{\"title\":\"Acute toxicity and metabolism of pesticides in birds.\",\"authors\":\"Toshiyuki Katagi, Takuo Fujisawa\",\"doi\":\"10.1584/jpestics.D21-028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The median lethal dose of pesticide in acute oral toxicity, used as a conservative index in avian risk assessment, varies by the species with differences of less than one order of magnitude, depending on body size, feeding habit, and metabolic enzyme activity. The profiles of pesticide metabolism in birds with characteristic conjugations are basically common to those in mammals, but less information is available on their relevant enzymes. The higher toxicity of some pesticides in birds than in mammals is due to the lower activity of avian metabolic enzymes. The bioaccumulation in birds is limited for very hydrophobic pesticides resistant to metabolic degradation. Several <i>in silico</i> approaches using the descriptors of a pesticide molecule have recently been employed to estimate the profiles of acute oral toxicity and bioaccumulation.</p>\",\"PeriodicalId\":16712,\"journal\":{\"name\":\"Journal of Pesticide Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2021-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/42/85/jps-46-4-D21-028.PMC8640698.pdf\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pesticide Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1584/jpestics.D21-028\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pesticide Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1584/jpestics.D21-028","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
Acute toxicity and metabolism of pesticides in birds.
The median lethal dose of pesticide in acute oral toxicity, used as a conservative index in avian risk assessment, varies by the species with differences of less than one order of magnitude, depending on body size, feeding habit, and metabolic enzyme activity. The profiles of pesticide metabolism in birds with characteristic conjugations are basically common to those in mammals, but less information is available on their relevant enzymes. The higher toxicity of some pesticides in birds than in mammals is due to the lower activity of avian metabolic enzymes. The bioaccumulation in birds is limited for very hydrophobic pesticides resistant to metabolic degradation. Several in silico approaches using the descriptors of a pesticide molecule have recently been employed to estimate the profiles of acute oral toxicity and bioaccumulation.
期刊介绍:
The Journal of Pesticide Science publishes the results of original research regarding the chemistry and biochemistry of pesticides including bio-based materials. It also covers their metabolism, toxicology, environmental fate and formulation.