使用一种新的基于cnn的医学图像分析和检测网络对磁共振图像进行脑肿瘤分类,并与VGG16进行比较。

Ramya Mohan, Kirupa Ganapathy, Rama A
{"title":"使用一种新的基于cnn的医学图像分析和检测网络对磁共振图像进行脑肿瘤分类,并与VGG16进行比较。","authors":"Ramya Mohan,&nbsp;Kirupa Ganapathy,&nbsp;Rama A","doi":"10.47750/jptcp.2022.873","DOIUrl":null,"url":null,"abstract":"<p><strong>Aim: </strong>This study aims at developing an automatic medical image analysis and detection for accurate classification of brain tumors from MRI dataset. The study implemented our novel MIDNet18 CNN architecture in comparison with the VGG16 CNN architecture for classifying normal brain images from the brain tumor images.</p><p><strong>Materials and methods: </strong>The novel MIDNet-18 CNN architecture comprises 14 convolutional layers, 7 pooling layers, 4 dense layers and 1 classification layer. The dataset used for this study has two classes: Normal Brain MR Images and Brain Tumor MR Images. This binary MRI brain dataset consists of 2918 images as training set, 1458 images as validation set and 212 images as test set. Independent sample size calculated was 7 for each group, keeping GPower at 80%.</p><p><strong>Result: </strong>From the experimental results, the proposed MIDNet18 model obtained 98.7% accuracy. Whereas, the VGG16 model obtained an accuracy of 50%. Hence, the performance of the proposed MIDNet18 model achieved is better than VGG16. Conclusion: The proposed model is proved to be statistically significant with p value <0.001 (Independent sample t-test) than the existing model VGG16.</p>","PeriodicalId":73904,"journal":{"name":"Journal of population therapeutics and clinical pharmacology = Journal de la therapeutique des populations et de la pharmacologie clinique","volume":"28 2","pages":"e113-e125"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Brain tumour classification of magnetic resonance images using a novel CNN-based medical image analysis and detection network in comparison to VGG16.\",\"authors\":\"Ramya Mohan,&nbsp;Kirupa Ganapathy,&nbsp;Rama A\",\"doi\":\"10.47750/jptcp.2022.873\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Aim: </strong>This study aims at developing an automatic medical image analysis and detection for accurate classification of brain tumors from MRI dataset. The study implemented our novel MIDNet18 CNN architecture in comparison with the VGG16 CNN architecture for classifying normal brain images from the brain tumor images.</p><p><strong>Materials and methods: </strong>The novel MIDNet-18 CNN architecture comprises 14 convolutional layers, 7 pooling layers, 4 dense layers and 1 classification layer. The dataset used for this study has two classes: Normal Brain MR Images and Brain Tumor MR Images. This binary MRI brain dataset consists of 2918 images as training set, 1458 images as validation set and 212 images as test set. Independent sample size calculated was 7 for each group, keeping GPower at 80%.</p><p><strong>Result: </strong>From the experimental results, the proposed MIDNet18 model obtained 98.7% accuracy. Whereas, the VGG16 model obtained an accuracy of 50%. Hence, the performance of the proposed MIDNet18 model achieved is better than VGG16. Conclusion: The proposed model is proved to be statistically significant with p value <0.001 (Independent sample t-test) than the existing model VGG16.</p>\",\"PeriodicalId\":73904,\"journal\":{\"name\":\"Journal of population therapeutics and clinical pharmacology = Journal de la therapeutique des populations et de la pharmacologie clinique\",\"volume\":\"28 2\",\"pages\":\"e113-e125\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of population therapeutics and clinical pharmacology = Journal de la therapeutique des populations et de la pharmacologie clinique\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47750/jptcp.2022.873\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of population therapeutics and clinical pharmacology = Journal de la therapeutique des populations et de la pharmacologie clinique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47750/jptcp.2022.873","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

目的:开发一种基于MRI数据集的医学图像自动分析与检测系统,用于脑肿瘤的准确分类。与VGG16 CNN架构相比,该研究实现了我们新颖的MIDNet18 CNN架构,用于从脑肿瘤图像中分类正常脑图像。材料与方法:新型MIDNet-18 CNN架构包括14个卷积层、7个池化层、4个密集层和1个分类层。本研究使用的数据集分为两类:正常脑磁共振图像和脑肿瘤磁共振图像。该二值MRI脑数据集由2918张图像作为训练集、1458张图像作为验证集和212张图像作为测试集组成。每组计算的独立样本量为7,使GPower保持在80%。结果:从实验结果来看,所提出的MIDNet18模型准确率达到了98.7%。而VGG16模型的准确率为50%。因此,所提出的MIDNet18模型的性能优于VGG16。结论:该模型的p值具有统计学意义
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Brain tumour classification of magnetic resonance images using a novel CNN-based medical image analysis and detection network in comparison to VGG16.

Aim: This study aims at developing an automatic medical image analysis and detection for accurate classification of brain tumors from MRI dataset. The study implemented our novel MIDNet18 CNN architecture in comparison with the VGG16 CNN architecture for classifying normal brain images from the brain tumor images.

Materials and methods: The novel MIDNet-18 CNN architecture comprises 14 convolutional layers, 7 pooling layers, 4 dense layers and 1 classification layer. The dataset used for this study has two classes: Normal Brain MR Images and Brain Tumor MR Images. This binary MRI brain dataset consists of 2918 images as training set, 1458 images as validation set and 212 images as test set. Independent sample size calculated was 7 for each group, keeping GPower at 80%.

Result: From the experimental results, the proposed MIDNet18 model obtained 98.7% accuracy. Whereas, the VGG16 model obtained an accuracy of 50%. Hence, the performance of the proposed MIDNet18 model achieved is better than VGG16. Conclusion: The proposed model is proved to be statistically significant with p value <0.001 (Independent sample t-test) than the existing model VGG16.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Application of forward selection strategy using C4.5 algorithm to improve the accuracy of classification's data set. Association of oral candidiasis with oral lichen planus in patients using corticosteroid therapy - Meta-analysis. Long COVID-19 prevalence among a sample of infected people in Erbil city. Human development index and innovation capabilities in the health sector of UAE. Comparison of the proposed DCNN model with standard CNN architectures for retinal diseases classification.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1