蛇床子素通过EIF2磷酸化介导的凋亡和调控HIF-1对缺氧结肠癌细胞的抑制作用[公式:见文]。

IF 4.8 2区 医学 Q1 INTEGRATIVE & COMPLEMENTARY MEDICINE American Journal of Chinese Medicine Pub Date : 2022-01-01 Epub Date: 2022-02-03 DOI:10.1142/S0192415X22500240
Kui-Yuan Peng, Tz-Chong Chou
{"title":"蛇床子素通过EIF2磷酸化介导的凋亡和调控HIF-1对缺氧结肠癌细胞的抑制作用[公式:见文]。","authors":"Kui-Yuan Peng,&nbsp;Tz-Chong Chou","doi":"10.1142/S0192415X22500240","DOIUrl":null,"url":null,"abstract":"<p><p>Hypoxic microenvironment and dysregulated endoplasmic reticulum stress/unfolded protein response (UPR) system are considered important factors that promote cancer progression. Although osthole extracted from <i>Cnidium monnieri</i>(Fructus Cnidii) has been confirmed to exhibit an anticancer activity in various cancers, the effects of osthole in hypoxic colon cancer cells have not been explored. Therefore, the aim of this study was to examine whether osthole has an inhibitory effect on hypoxic colon cancer HCT116 cells and further investigate the underlying molecular mechanisms. Treatment with osthole significantly attenuated the cell viability, proliferation, and migration in hypoxic HCT116 cells. Osthole also activated UPR signaling such as phospho-eukaryotic initiation factor 2 alpha (EIF2[Formula: see text]/ATF4/CHOP/DR5 cascade accompanied by upregulation of pro-apoptotic proteins. Moreover, the tubule-like formation of human umbilical vein endothelial cells, the secretion of vascular endothelial growth factor A, and the expression and activity of hypoxia-inducible factor-1[Formula: see text] (HIF-1[Formula: see text] in hypoxic HCT116 cells were markedly suppressed by osthole. However, suppressing EIF2[Formula: see text] phosphorylation with salubrinal or ISRIB markedly reversed the effects of osthole on the expressions of pro-apoptotic proteins and HIF-1[Formula: see text]. Co-treatment of hypoxic HCT116 cells with osthole greatly increased the sensitivity to cisplatin and the expressions of phospho-EIF2[Formula: see text] and cleaved caspase 3. Collectively, the inhibitory effect of osthole in hypoxic HCT116 cells may be associated with EIF2[Formula: see text] phosphorylation-mediated apoptosis and translational repression of HIF-1[Formula: see text]. Taken together, osthole may be a potential agent in the treatment of colon cancer.</p>","PeriodicalId":50814,"journal":{"name":"American Journal of Chinese Medicine","volume":"50 2","pages":"621-637"},"PeriodicalIF":4.8000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Osthole Exerts Inhibitory Effects on Hypoxic Colon Cancer Cells via EIF2[Formula: see text] Phosphorylation-mediated Apoptosis and Regulation of HIF-1[Formula: see text].\",\"authors\":\"Kui-Yuan Peng,&nbsp;Tz-Chong Chou\",\"doi\":\"10.1142/S0192415X22500240\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hypoxic microenvironment and dysregulated endoplasmic reticulum stress/unfolded protein response (UPR) system are considered important factors that promote cancer progression. Although osthole extracted from <i>Cnidium monnieri</i>(Fructus Cnidii) has been confirmed to exhibit an anticancer activity in various cancers, the effects of osthole in hypoxic colon cancer cells have not been explored. Therefore, the aim of this study was to examine whether osthole has an inhibitory effect on hypoxic colon cancer HCT116 cells and further investigate the underlying molecular mechanisms. Treatment with osthole significantly attenuated the cell viability, proliferation, and migration in hypoxic HCT116 cells. Osthole also activated UPR signaling such as phospho-eukaryotic initiation factor 2 alpha (EIF2[Formula: see text]/ATF4/CHOP/DR5 cascade accompanied by upregulation of pro-apoptotic proteins. Moreover, the tubule-like formation of human umbilical vein endothelial cells, the secretion of vascular endothelial growth factor A, and the expression and activity of hypoxia-inducible factor-1[Formula: see text] (HIF-1[Formula: see text] in hypoxic HCT116 cells were markedly suppressed by osthole. However, suppressing EIF2[Formula: see text] phosphorylation with salubrinal or ISRIB markedly reversed the effects of osthole on the expressions of pro-apoptotic proteins and HIF-1[Formula: see text]. Co-treatment of hypoxic HCT116 cells with osthole greatly increased the sensitivity to cisplatin and the expressions of phospho-EIF2[Formula: see text] and cleaved caspase 3. Collectively, the inhibitory effect of osthole in hypoxic HCT116 cells may be associated with EIF2[Formula: see text] phosphorylation-mediated apoptosis and translational repression of HIF-1[Formula: see text]. Taken together, osthole may be a potential agent in the treatment of colon cancer.</p>\",\"PeriodicalId\":50814,\"journal\":{\"name\":\"American Journal of Chinese Medicine\",\"volume\":\"50 2\",\"pages\":\"621-637\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Chinese Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1142/S0192415X22500240\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/2/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"INTEGRATIVE & COMPLEMENTARY MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Chinese Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1142/S0192415X22500240","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/2/3 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"INTEGRATIVE & COMPLEMENTARY MEDICINE","Score":null,"Total":0}
引用次数: 4

摘要

缺氧微环境和失调的内质网应激/未折叠蛋白反应(UPR)系统被认为是促进癌症进展的重要因素。虽然从蛇床子中提取的蛇床子素已被证实对多种癌症具有抗癌活性,但蛇床子素对缺氧结肠癌细胞的作用尚未被探索。因此,本研究的目的是研究蛇床子素是否对缺氧结肠癌HCT116细胞有抑制作用,并进一步探讨其潜在的分子机制。蛇床子素显著降低缺氧HCT116细胞的活力、增殖和迁移。蛇蛇素还能激活UPR信号通路,如磷酸化真核起始因子2 α (EIF2) /ATF4/CHOP/DR5级联反应,并伴有促凋亡蛋白的上调。此外,蛇蛇素显著抑制人脐静脉内皮细胞的小管样形成、血管内皮生长因子A的分泌、缺氧诱导因子-1 (HIF-1)的表达和活性。然而,用salubrinal或ISRIB抑制EIF2磷酸化可显著逆转蛇床子素对促凋亡蛋白和HIF-1表达的影响。缺氧HCT116细胞与蛇thoole共处理后,对顺铂的敏感性和phospho-EIF2[公式:见文]和cleaved caspase 3的表达均显著增加。综上所述,蛇床子素在缺氧HCT116细胞中的抑制作用可能与EIF2磷酸化介导的凋亡和HIF-1的翻译抑制有关[公式:见文本]。综上所述,蛇床子素可能是治疗结肠癌的潜在药物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Osthole Exerts Inhibitory Effects on Hypoxic Colon Cancer Cells via EIF2[Formula: see text] Phosphorylation-mediated Apoptosis and Regulation of HIF-1[Formula: see text].

Hypoxic microenvironment and dysregulated endoplasmic reticulum stress/unfolded protein response (UPR) system are considered important factors that promote cancer progression. Although osthole extracted from Cnidium monnieri(Fructus Cnidii) has been confirmed to exhibit an anticancer activity in various cancers, the effects of osthole in hypoxic colon cancer cells have not been explored. Therefore, the aim of this study was to examine whether osthole has an inhibitory effect on hypoxic colon cancer HCT116 cells and further investigate the underlying molecular mechanisms. Treatment with osthole significantly attenuated the cell viability, proliferation, and migration in hypoxic HCT116 cells. Osthole also activated UPR signaling such as phospho-eukaryotic initiation factor 2 alpha (EIF2[Formula: see text]/ATF4/CHOP/DR5 cascade accompanied by upregulation of pro-apoptotic proteins. Moreover, the tubule-like formation of human umbilical vein endothelial cells, the secretion of vascular endothelial growth factor A, and the expression and activity of hypoxia-inducible factor-1[Formula: see text] (HIF-1[Formula: see text] in hypoxic HCT116 cells were markedly suppressed by osthole. However, suppressing EIF2[Formula: see text] phosphorylation with salubrinal or ISRIB markedly reversed the effects of osthole on the expressions of pro-apoptotic proteins and HIF-1[Formula: see text]. Co-treatment of hypoxic HCT116 cells with osthole greatly increased the sensitivity to cisplatin and the expressions of phospho-EIF2[Formula: see text] and cleaved caspase 3. Collectively, the inhibitory effect of osthole in hypoxic HCT116 cells may be associated with EIF2[Formula: see text] phosphorylation-mediated apoptosis and translational repression of HIF-1[Formula: see text]. Taken together, osthole may be a potential agent in the treatment of colon cancer.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
American Journal of Chinese Medicine
American Journal of Chinese Medicine 医学-全科医学与补充医学
CiteScore
9.90
自引率
8.80%
发文量
159
审稿时长
4.5 months
期刊介绍: The American Journal of Chinese Medicine, which is defined in its broadest sense possible, publishes original articles and essays relating to traditional or ethnomedicine of all cultures. Areas of particular interest include: Basic scientific and clinical research in indigenous medical techniques, therapeutic procedures, medicinal plants, and traditional medical theories and concepts; Multidisciplinary study of medical practice and health care, especially from historical, cultural, public health, and socioeconomic perspectives; International policy implications of comparative studies of medicine in all cultures, including such issues as health in developing countries, affordability and transferability of health-care techniques and concepts; Translating scholarly ancient texts or modern publications on ethnomedicine. The American Journal of Chinese Medicine will consider for publication a broad range of scholarly contributions, including original scientific research papers, review articles, editorial comments, social policy statements, brief news items, bibliographies, research guides, letters to the editors, book reviews, and selected reprints.
期刊最新文献
Acupuncture and Acupoints for Low Back Pain: Systematic Review and Meta-Analysis. Standardized Extract of Centella asiatica Prevents Fear Memory Deficit in 3xTg-AD Mice. Biometrics Data Visualization of Ginsenosides in Anticancer Investigations. 20(S)-Protopanaxadiol from Panax ginseng Induces Apoptosis and Autophagy in Gastric Cancer Cells by Inhibiting Src. Acupuncture for Fibromyalgia: A Review Based on Multidimensional Evidence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1