计算模拟非正态数据的Fleishman方程的实解

IF 1.5 3区 心理学 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS British Journal of Mathematical & Statistical Psychology Pub Date : 2021-11-15 DOI:10.1111/bmsp.12259
Nathaniel E. Helwig
{"title":"计算模拟非正态数据的Fleishman方程的实解","authors":"Nathaniel E. Helwig","doi":"10.1111/bmsp.12259","DOIUrl":null,"url":null,"abstract":"<p>Fleishman's power method is frequently used to simulate non-normal data with a desired skewness and kurtosis. Fleishman's method requires solving a system of nonlinear equations to find the third-order polynomial weights that transform a standard normal variable into a non-normal variable with desired moments. Most users of the power method seem unaware that Fleishman's equations have multiple solutions for typical combinations of skewness and kurtosis. Furthermore, researchers lack a simple method for exploring the multiple solutions of Fleishman's equations, so most applications only consider a single solution. In this paper, we propose novel methods for finding all real-valued solutions of Fleishman's equations. Additionally, we characterize the solutions in terms of differences in higher order moments. Our theoretical analysis of the power method reveals that there typically exists two solutions of Fleishman's equations that have noteworthy differences in higher order moments. Using simulated examples, we demonstrate that these differences can have remarkable effects on the shape of the non-normal distribution, as well as the sampling distributions of statistics calculated from the data. Some considerations for choosing a solution are discussed, and some recommendations for improved reporting standards are provided.</p>","PeriodicalId":55322,"journal":{"name":"British Journal of Mathematical & Statistical Psychology","volume":"75 2","pages":"319-333"},"PeriodicalIF":1.5000,"publicationDate":"2021-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computing the real solutions of Fleishman's equations for simulating non-normal data\",\"authors\":\"Nathaniel E. Helwig\",\"doi\":\"10.1111/bmsp.12259\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Fleishman's power method is frequently used to simulate non-normal data with a desired skewness and kurtosis. Fleishman's method requires solving a system of nonlinear equations to find the third-order polynomial weights that transform a standard normal variable into a non-normal variable with desired moments. Most users of the power method seem unaware that Fleishman's equations have multiple solutions for typical combinations of skewness and kurtosis. Furthermore, researchers lack a simple method for exploring the multiple solutions of Fleishman's equations, so most applications only consider a single solution. In this paper, we propose novel methods for finding all real-valued solutions of Fleishman's equations. Additionally, we characterize the solutions in terms of differences in higher order moments. Our theoretical analysis of the power method reveals that there typically exists two solutions of Fleishman's equations that have noteworthy differences in higher order moments. Using simulated examples, we demonstrate that these differences can have remarkable effects on the shape of the non-normal distribution, as well as the sampling distributions of statistics calculated from the data. Some considerations for choosing a solution are discussed, and some recommendations for improved reporting standards are provided.</p>\",\"PeriodicalId\":55322,\"journal\":{\"name\":\"British Journal of Mathematical & Statistical Psychology\",\"volume\":\"75 2\",\"pages\":\"319-333\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2021-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"British Journal of Mathematical & Statistical Psychology\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/bmsp.12259\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"British Journal of Mathematical & Statistical Psychology","FirstCategoryId":"102","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/bmsp.12259","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

弗莱什曼幂方法经常用于模拟具有期望偏度和峰度的非正态数据。Fleishman的方法需要求解一个非线性方程组来找到将标准正态变量转换为具有期望矩的非正态变量的三阶多项式权重。大多数幂方法的使用者似乎没有意识到,对于典型的偏度和峰度组合,Fleishman方程有多个解。此外,研究人员缺乏一种简单的方法来探索Fleishman方程的多个解,因此大多数应用只考虑单个解。本文提出了一种求Fleishman方程全实值解的新方法。此外,我们用高阶矩的差异来描述解。我们对幂方法的理论分析表明,通常存在两个具有显著高阶矩差异的Fleishman方程解。通过模拟实例,我们证明了这些差异会对非正态分布的形状以及从数据计算的统计量的抽样分布产生显着影响。讨论了选择解决方案的一些考虑因素,并提供了改进报告标准的一些建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Computing the real solutions of Fleishman's equations for simulating non-normal data

Fleishman's power method is frequently used to simulate non-normal data with a desired skewness and kurtosis. Fleishman's method requires solving a system of nonlinear equations to find the third-order polynomial weights that transform a standard normal variable into a non-normal variable with desired moments. Most users of the power method seem unaware that Fleishman's equations have multiple solutions for typical combinations of skewness and kurtosis. Furthermore, researchers lack a simple method for exploring the multiple solutions of Fleishman's equations, so most applications only consider a single solution. In this paper, we propose novel methods for finding all real-valued solutions of Fleishman's equations. Additionally, we characterize the solutions in terms of differences in higher order moments. Our theoretical analysis of the power method reveals that there typically exists two solutions of Fleishman's equations that have noteworthy differences in higher order moments. Using simulated examples, we demonstrate that these differences can have remarkable effects on the shape of the non-normal distribution, as well as the sampling distributions of statistics calculated from the data. Some considerations for choosing a solution are discussed, and some recommendations for improved reporting standards are provided.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.00
自引率
3.80%
发文量
34
审稿时长
>12 weeks
期刊介绍: The British Journal of Mathematical and Statistical Psychology publishes articles relating to areas of psychology which have a greater mathematical or statistical aspect of their argument than is usually acceptable to other journals including: • mathematical psychology • statistics • psychometrics • decision making • psychophysics • classification • relevant areas of mathematics, computing and computer software These include articles that address substantitive psychological issues or that develop and extend techniques useful to psychologists. New models for psychological processes, new approaches to existing data, critiques of existing models and improved algorithms for estimating the parameters of a model are examples of articles which may be favoured.
期刊最新文献
A new Q-matrix validation method based on signal detection theory. Discriminability around polytomous knowledge structures and polytomous functions. Understanding linear interaction analysis with causal graphs. Identifiability analysis of the fixed-effects one-parameter logistic positive exponent model. Regularized Bayesian algorithms for Q-matrix inference based on saturated cognitive diagnosis modelling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1