银叶的合成及其在酚类污染物分析和降解中的潜在应用。

IF 3.8 4区 工程技术 Q1 BIOCHEMICAL RESEARCH METHODS IET nanobiotechnology Pub Date : 2022-02-10 DOI:10.1049/nbt2.12077
Jianan Sun, Xianhui Gao, Wei Wei
{"title":"银叶的合成及其在酚类污染物分析和降解中的潜在应用。","authors":"Jianan Sun,&nbsp;Xianhui Gao,&nbsp;Wei Wei","doi":"10.1049/nbt2.12077","DOIUrl":null,"url":null,"abstract":"<p>A one-pot bottom-up synthesis method was used to synthesise multi-level leaf-like nano-silver (silver leaf) by simply mixing AgNO<sub>3</sub>, L-ascorbic acid, Sodium sodium citrate, and polyvinylpyrrolidone (PVP) in the ethanol-water mixed solvents. Scanning electron microscopy (SEM) characterisations show that the silver leaves have tertiary structures and their sizes are controllable. In addition, silver leaves exhibit excellent Raman enhancement effect (SERS) and chemical catalytic activities for phenolic molecules. Interestingly, the SERS and catalytic activities increase as the size of the silver leaves decrease within a certain range, but when the size is too small, both of these performances weaken. The nanometre size and interstitial structure have a common amplification effect and influence on these activities. The present work not only showed a new method for the synthesis of silver leaves but also could be generalised to find other metallic leaves that could be used as promising heterogeneous catalysts for various reactions. The production of such small-sized silver leaves will facilitate the analysis of phenolic pollutants through Raman enhancement and treat these pollutants through catalytic degradation.</p>","PeriodicalId":13393,"journal":{"name":"IET nanobiotechnology","volume":"16 3","pages":"78-84"},"PeriodicalIF":3.8000,"publicationDate":"2022-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/66/bc/NBT2-16-78.PMC9007148.pdf","citationCount":"0","resultStr":"{\"title\":\"Synthesis of silver leaves and their potential application for analysis and degradation of phenolic pollutants\",\"authors\":\"Jianan Sun,&nbsp;Xianhui Gao,&nbsp;Wei Wei\",\"doi\":\"10.1049/nbt2.12077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A one-pot bottom-up synthesis method was used to synthesise multi-level leaf-like nano-silver (silver leaf) by simply mixing AgNO<sub>3</sub>, L-ascorbic acid, Sodium sodium citrate, and polyvinylpyrrolidone (PVP) in the ethanol-water mixed solvents. Scanning electron microscopy (SEM) characterisations show that the silver leaves have tertiary structures and their sizes are controllable. In addition, silver leaves exhibit excellent Raman enhancement effect (SERS) and chemical catalytic activities for phenolic molecules. Interestingly, the SERS and catalytic activities increase as the size of the silver leaves decrease within a certain range, but when the size is too small, both of these performances weaken. The nanometre size and interstitial structure have a common amplification effect and influence on these activities. The present work not only showed a new method for the synthesis of silver leaves but also could be generalised to find other metallic leaves that could be used as promising heterogeneous catalysts for various reactions. The production of such small-sized silver leaves will facilitate the analysis of phenolic pollutants through Raman enhancement and treat these pollutants through catalytic degradation.</p>\",\"PeriodicalId\":13393,\"journal\":{\"name\":\"IET nanobiotechnology\",\"volume\":\"16 3\",\"pages\":\"78-84\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2022-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/66/bc/NBT2-16-78.PMC9007148.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET nanobiotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/nbt2.12077\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET nanobiotechnology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/nbt2.12077","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

采用一锅自下而上的合成方法,将AgNO3、L-抗坏血酸、柠檬酸钠和聚乙烯吡咯烷酮(PVP)在乙醇-水混合溶剂中简单混合,合成了多层片状纳米银(银叶)。扫描电子显微镜(SEM)表征表明,银叶具有三级结构,其尺寸可控。此外,银叶对酚类分子表现出优异的拉曼增强效应(SERS)和化学催化活性。有趣的是,在一定范围内,随着银片尺寸的减小,SERS和催化活性都会增加,但当尺寸太小时,这两种性能都会减弱。纳米尺寸和间隙结构对这些活性具有共同的放大效应和影响。目前的工作不仅展示了一种合成银叶的新方法,而且可以推广到寻找其他金属叶,这些金属叶可以用作各种反应的有前途的多相催化剂。这种小尺寸银叶的生产将有助于通过拉曼增强分析酚类污染物,并通过催化降解处理这些污染物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Synthesis of silver leaves and their potential application for analysis and degradation of phenolic pollutants

A one-pot bottom-up synthesis method was used to synthesise multi-level leaf-like nano-silver (silver leaf) by simply mixing AgNO3, L-ascorbic acid, Sodium sodium citrate, and polyvinylpyrrolidone (PVP) in the ethanol-water mixed solvents. Scanning electron microscopy (SEM) characterisations show that the silver leaves have tertiary structures and their sizes are controllable. In addition, silver leaves exhibit excellent Raman enhancement effect (SERS) and chemical catalytic activities for phenolic molecules. Interestingly, the SERS and catalytic activities increase as the size of the silver leaves decrease within a certain range, but when the size is too small, both of these performances weaken. The nanometre size and interstitial structure have a common amplification effect and influence on these activities. The present work not only showed a new method for the synthesis of silver leaves but also could be generalised to find other metallic leaves that could be used as promising heterogeneous catalysts for various reactions. The production of such small-sized silver leaves will facilitate the analysis of phenolic pollutants through Raman enhancement and treat these pollutants through catalytic degradation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET nanobiotechnology
IET nanobiotechnology 工程技术-纳米科技
CiteScore
6.20
自引率
4.30%
发文量
34
审稿时长
1 months
期刊介绍: Electrical and electronic engineers have a long and illustrious history of contributing new theories and technologies to the biomedical sciences. This includes the cable theory for understanding the transmission of electrical signals in nerve axons and muscle fibres; dielectric techniques that advanced the understanding of cell membrane structures and membrane ion channels; electron and atomic force microscopy for investigating cells at the molecular level. Other engineering disciplines, along with contributions from the biological, chemical, materials and physical sciences, continue to provide groundbreaking contributions to this subject at the molecular and submolecular level. Our subject now extends from single molecule measurements using scanning probe techniques, through to interactions between cells and microstructures, micro- and nano-fluidics, and aspects of lab-on-chip technologies. The primary aim of IET Nanobiotechnology is to provide a vital resource for academic and industrial researchers operating in this exciting cross-disciplinary activity. We can only achieve this by publishing cutting edge research papers and expert review articles from the international engineering and scientific community. To attract such contributions we will exercise a commitment to our authors by ensuring that their manuscripts receive rapid constructive peer opinions and feedback across interdisciplinary boundaries. IET Nanobiotechnology covers all aspects of research and emerging technologies including, but not limited to: Fundamental theories and concepts applied to biomedical-related devices and methods at the micro- and nano-scale (including methods that employ electrokinetic, electrohydrodynamic, and optical trapping techniques) Micromachining and microfabrication tools and techniques applied to the top-down approach to nanobiotechnology Nanomachining and nanofabrication tools and techniques directed towards biomedical and biotechnological applications (e.g. applications of atomic force microscopy, scanning probe microscopy and related tools) Colloid chemistry applied to nanobiotechnology (e.g. cosmetics, suntan lotions, bio-active nanoparticles) Biosynthesis (also known as green synthesis) of nanoparticles; to be considered for publication, research papers in this area must be directed principally towards biomedical research and especially if they encompass in vivo models or proofs of concept. We welcome papers that are application-orientated or offer new concepts of substantial biomedical importance Techniques for probing cell physiology, cell adhesion sites and cell-cell communication Molecular self-assembly, including concepts of supramolecular chemistry, molecular recognition, and DNA nanotechnology Societal issues such as health and the environment Special issues. Call for papers: Smart Nanobiosensors for Next-generation Biomedical Applications - https://digital-library.theiet.org/files/IET_NBT_CFP_SNNBA.pdf Selected extended papers from the International conference of the 19th Asian BioCeramic Symposium - https://digital-library.theiet.org/files/IET_NBT_CFP_ABS.pdf
期刊最新文献
Mesenchymal Stem Cell Membrane-Derived Composite System for Enhancing the Tumor Treatment Efficacy of Metal–Organic Framework Nanoparticles PLGA-PEG-c(RGDfK)-Kushenol E Micelles With a Therapeutic Potential for Targeting Ovarian Cancer Nanocodelivery of 5-Fluorouracil and Curcumin by RGD-Decorated Nanoliposomes Achieves Synergistic Chemotherapy for Breast Cancer Linum usitatissimum Delivery over Chitosan Nanobiopolymer: Enhanced Effects on Polycystic Ovary Syndrome Condition Liposomal-Naringenin Radiosensitizes Triple-Negative Breast Cancer MDA-MB-231 Cells In Vitro
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1