{"title":"用分布适应度评价解决模性诱导问题域行为异常","authors":"Zhenyue Qin;Tom Gedeon;R. I. McKay","doi":"10.1162/artl_a_00353","DOIUrl":null,"url":null,"abstract":"Discrete gene regulatory networks (GRNs) play a vital role in the study of robustness and modularity. A common method of evaluating the robustness of GRNs is to measure their ability to regulate a set of perturbed gene activation patterns back to their unperturbed forms. Usually, perturbations are obtained by collecting random samples produced by a predefined distribution of gene activation patterns. This sampling method introduces stochasticity, in turn inducing dynamicity. This dynamicity is imposed on top of an already complex fitness landscape. So where sampling is used, it is important to understand which effects arise from the structure of the fitness landscape, and which arise from the dynamicity imposed on it. Stochasticity of the fitness function also causes difficulties in reproducibility and in post-experimental analyses. We develop a deterministic distributional fitness evaluation by considering the complete distribution of gene activity patterns, so as to avoid stochasticity in fitness assessment. This fitness evaluation facilitates repeatability. Its determinism permits us to ascertain theoretical bounds on the fitness, and thus to identify whether the algorithm has reached a global optimum. It enables us to differentiate the effects of the problem domain from those of the noisy fitness evaluation, and thus to resolve two remaining anomalies in the behaviour of the problem domain of Espinosa-Soto and A. Wagner (2010). We also reveal some properties of solution GRNs that lead them to be robust and modular, leading to a deeper understanding of the nature of the problem domain. We conclude by discussing potential directions toward simulating and understanding the emergence of modularity in larger, more complex domains, which is key both to generating more useful modular solutions, and to understanding the ubiquity of modularity in biological systems.","PeriodicalId":55574,"journal":{"name":"Artificial Life","volume":"28 2","pages":"240-263"},"PeriodicalIF":1.6000,"publicationDate":"2022-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Resolving Anomalies in the Behaviour of a Modularity-Inducing Problem Domain with Distributional Fitness Evaluation\",\"authors\":\"Zhenyue Qin;Tom Gedeon;R. I. McKay\",\"doi\":\"10.1162/artl_a_00353\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Discrete gene regulatory networks (GRNs) play a vital role in the study of robustness and modularity. A common method of evaluating the robustness of GRNs is to measure their ability to regulate a set of perturbed gene activation patterns back to their unperturbed forms. Usually, perturbations are obtained by collecting random samples produced by a predefined distribution of gene activation patterns. This sampling method introduces stochasticity, in turn inducing dynamicity. This dynamicity is imposed on top of an already complex fitness landscape. So where sampling is used, it is important to understand which effects arise from the structure of the fitness landscape, and which arise from the dynamicity imposed on it. Stochasticity of the fitness function also causes difficulties in reproducibility and in post-experimental analyses. We develop a deterministic distributional fitness evaluation by considering the complete distribution of gene activity patterns, so as to avoid stochasticity in fitness assessment. This fitness evaluation facilitates repeatability. Its determinism permits us to ascertain theoretical bounds on the fitness, and thus to identify whether the algorithm has reached a global optimum. It enables us to differentiate the effects of the problem domain from those of the noisy fitness evaluation, and thus to resolve two remaining anomalies in the behaviour of the problem domain of Espinosa-Soto and A. Wagner (2010). We also reveal some properties of solution GRNs that lead them to be robust and modular, leading to a deeper understanding of the nature of the problem domain. We conclude by discussing potential directions toward simulating and understanding the emergence of modularity in larger, more complex domains, which is key both to generating more useful modular solutions, and to understanding the ubiquity of modularity in biological systems.\",\"PeriodicalId\":55574,\"journal\":{\"name\":\"Artificial Life\",\"volume\":\"28 2\",\"pages\":\"240-263\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2022-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Life\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10301999/\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Life","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10301999/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Resolving Anomalies in the Behaviour of a Modularity-Inducing Problem Domain with Distributional Fitness Evaluation
Discrete gene regulatory networks (GRNs) play a vital role in the study of robustness and modularity. A common method of evaluating the robustness of GRNs is to measure their ability to regulate a set of perturbed gene activation patterns back to their unperturbed forms. Usually, perturbations are obtained by collecting random samples produced by a predefined distribution of gene activation patterns. This sampling method introduces stochasticity, in turn inducing dynamicity. This dynamicity is imposed on top of an already complex fitness landscape. So where sampling is used, it is important to understand which effects arise from the structure of the fitness landscape, and which arise from the dynamicity imposed on it. Stochasticity of the fitness function also causes difficulties in reproducibility and in post-experimental analyses. We develop a deterministic distributional fitness evaluation by considering the complete distribution of gene activity patterns, so as to avoid stochasticity in fitness assessment. This fitness evaluation facilitates repeatability. Its determinism permits us to ascertain theoretical bounds on the fitness, and thus to identify whether the algorithm has reached a global optimum. It enables us to differentiate the effects of the problem domain from those of the noisy fitness evaluation, and thus to resolve two remaining anomalies in the behaviour of the problem domain of Espinosa-Soto and A. Wagner (2010). We also reveal some properties of solution GRNs that lead them to be robust and modular, leading to a deeper understanding of the nature of the problem domain. We conclude by discussing potential directions toward simulating and understanding the emergence of modularity in larger, more complex domains, which is key both to generating more useful modular solutions, and to understanding the ubiquity of modularity in biological systems.
期刊介绍:
Artificial Life, launched in the fall of 1993, has become the unifying forum for the exchange of scientific information on the study of artificial systems that exhibit the behavioral characteristics of natural living systems, through the synthesis or simulation using computational (software), robotic (hardware), and/or physicochemical (wetware) means. Each issue features cutting-edge research on artificial life that advances the state-of-the-art of our knowledge about various aspects of living systems such as:
Artificial chemistry and the origins of life
Self-assembly, growth, and development
Self-replication and self-repair
Systems and synthetic biology
Perception, cognition, and behavior
Embodiment and enactivism
Collective behaviors of swarms
Evolutionary and ecological dynamics
Open-endedness and creativity
Social organization and cultural evolution
Societal and technological implications
Philosophy and aesthetics
Applications to biology, medicine, business, education, or entertainment.