Guobing Wei, Qiqi Fan, Nian Hong, Hanfeng Cui, Wenxing Zhang, Mijit Rustam, Alxir Alim, Tao Jiang, Huanhuan Dong, Hao Fan
{"title":"基于自供电DNA机的无试剂适体传感器电化学检测AFB1","authors":"Guobing Wei, Qiqi Fan, Nian Hong, Hanfeng Cui, Wenxing Zhang, Mijit Rustam, Alxir Alim, Tao Jiang, Huanhuan Dong, Hao Fan","doi":"10.1007/s12678-023-00819-w","DOIUrl":null,"url":null,"abstract":"<p>A reagentless electrochemical aptamer sensor for AFB1 detection was constructed based on DNAzyme-driven DNA walker and bisferrocene. No significant change in electrochemical signal was observed when the target AFB1 was not added. The electrochemical signal was significantly reduced when the target AFB1 was added.</p>","PeriodicalId":535,"journal":{"name":"Electrocatalysis","volume":"14 4","pages":"593 - 601"},"PeriodicalIF":2.7000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Reagentless Aptamer Sensor Based on a Self-Powered DNA Machine for Electrochemical Detection of AFB1\",\"authors\":\"Guobing Wei, Qiqi Fan, Nian Hong, Hanfeng Cui, Wenxing Zhang, Mijit Rustam, Alxir Alim, Tao Jiang, Huanhuan Dong, Hao Fan\",\"doi\":\"10.1007/s12678-023-00819-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A reagentless electrochemical aptamer sensor for AFB1 detection was constructed based on DNAzyme-driven DNA walker and bisferrocene. No significant change in electrochemical signal was observed when the target AFB1 was not added. The electrochemical signal was significantly reduced when the target AFB1 was added.</p>\",\"PeriodicalId\":535,\"journal\":{\"name\":\"Electrocatalysis\",\"volume\":\"14 4\",\"pages\":\"593 - 601\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electrocatalysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12678-023-00819-w\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrocatalysis","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s12678-023-00819-w","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
A Reagentless Aptamer Sensor Based on a Self-Powered DNA Machine for Electrochemical Detection of AFB1
A reagentless electrochemical aptamer sensor for AFB1 detection was constructed based on DNAzyme-driven DNA walker and bisferrocene. No significant change in electrochemical signal was observed when the target AFB1 was not added. The electrochemical signal was significantly reduced when the target AFB1 was added.
期刊介绍:
Electrocatalysis is cross-disciplinary in nature, and attracts the interest of chemists, physicists, biochemists, surface and materials scientists, and engineers. Electrocatalysis provides the unique international forum solely dedicated to the exchange of novel ideas in electrocatalysis for academic, government, and industrial researchers. Quick publication of new results, concepts, and inventions made involving Electrocatalysis stimulates scientific discoveries and breakthroughs, promotes the scientific and engineering concepts that are critical to the development of novel electrochemical technologies.
Electrocatalysis publishes original submissions in the form of letters, research papers, review articles, book reviews, and educational papers. Letters are preliminary reports that communicate new and important findings. Regular research papers are complete reports of new results, and their analysis and discussion. Review articles critically and constructively examine development in areas of electrocatalysis that are of broad interest and importance. Educational papers discuss important concepts whose understanding is vital to advances in theoretical and experimental aspects of electrochemical reactions.