通用域的广义分数匹配。

IF 1.4 4区 数学 Q2 MATHEMATICS, APPLIED Information and Inference-A Journal of the Ima Pub Date : 2021-01-25 eCollection Date: 2022-06-01 DOI:10.1093/imaiai/iaaa041
Shiqing Yu, Mathias Drton, Ali Shojaie
{"title":"通用域的广义分数匹配。","authors":"Shiqing Yu,&nbsp;Mathias Drton,&nbsp;Ali Shojaie","doi":"10.1093/imaiai/iaaa041","DOIUrl":null,"url":null,"abstract":"<p><p>Estimation of density functions supported on general domains arises when the data are naturally restricted to a proper subset of the real space. This problem is complicated by typically intractable normalizing constants. Score matching provides a powerful tool for estimating densities with such intractable normalizing constants but as originally proposed is limited to densities on [Formula: see text] and [Formula: see text]. In this paper, we offer a natural generalization of score matching that accommodates densities supported on a very general class of domains. We apply the framework to truncated graphical and pairwise interaction models and provide theoretical guarantees for the resulting estimators. We also generalize a recently proposed method from bounded to unbounded domains and empirically demonstrate the advantages of our method.</p>","PeriodicalId":45437,"journal":{"name":"Information and Inference-A Journal of the Ima","volume":"11 2","pages":"739-780"},"PeriodicalIF":1.4000,"publicationDate":"2021-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9203079/pdf/iaaa041.pdf","citationCount":"16","resultStr":"{\"title\":\"Generalized score matching for general domains.\",\"authors\":\"Shiqing Yu,&nbsp;Mathias Drton,&nbsp;Ali Shojaie\",\"doi\":\"10.1093/imaiai/iaaa041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Estimation of density functions supported on general domains arises when the data are naturally restricted to a proper subset of the real space. This problem is complicated by typically intractable normalizing constants. Score matching provides a powerful tool for estimating densities with such intractable normalizing constants but as originally proposed is limited to densities on [Formula: see text] and [Formula: see text]. In this paper, we offer a natural generalization of score matching that accommodates densities supported on a very general class of domains. We apply the framework to truncated graphical and pairwise interaction models and provide theoretical guarantees for the resulting estimators. We also generalize a recently proposed method from bounded to unbounded domains and empirically demonstrate the advantages of our method.</p>\",\"PeriodicalId\":45437,\"journal\":{\"name\":\"Information and Inference-A Journal of the Ima\",\"volume\":\"11 2\",\"pages\":\"739-780\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2021-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9203079/pdf/iaaa041.pdf\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information and Inference-A Journal of the Ima\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/imaiai/iaaa041\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/6/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information and Inference-A Journal of the Ima","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imaiai/iaaa041","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/6/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 16

摘要

当数据自然地限制在真实空间的适当子集中时,就会出现在一般域上支持的密度函数的估计。通常难以处理的正则化常数使这个问题变得复杂。分数匹配为估计密度提供了一个强大的工具,但正如最初提出的那样,它仅限于[公式:见文本]和[公式:见文本]上的密度。在本文中,我们提供了分数匹配的自然泛化,以适应在非常一般的域类上支持的密度。我们将该框架应用于截断图形和成对交互模型,并为得到的估计量提供了理论保证。我们还将最近提出的一种方法从有界域推广到无界域,并通过经验证明了该方法的优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Generalized score matching for general domains.

Estimation of density functions supported on general domains arises when the data are naturally restricted to a proper subset of the real space. This problem is complicated by typically intractable normalizing constants. Score matching provides a powerful tool for estimating densities with such intractable normalizing constants but as originally proposed is limited to densities on [Formula: see text] and [Formula: see text]. In this paper, we offer a natural generalization of score matching that accommodates densities supported on a very general class of domains. We apply the framework to truncated graphical and pairwise interaction models and provide theoretical guarantees for the resulting estimators. We also generalize a recently proposed method from bounded to unbounded domains and empirically demonstrate the advantages of our method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
28
期刊最新文献
The Dyson equalizer: adaptive noise stabilization for low-rank signal detection and recovery. Bi-stochastically normalized graph Laplacian: convergence to manifold Laplacian and robustness to outlier noise. Phase transition and higher order analysis of Lq regularization under dependence. On statistical inference with high-dimensional sparse CCA. Black-box tests for algorithmic stability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1