{"title":"通用域的广义分数匹配。","authors":"Shiqing Yu, Mathias Drton, Ali Shojaie","doi":"10.1093/imaiai/iaaa041","DOIUrl":null,"url":null,"abstract":"<p><p>Estimation of density functions supported on general domains arises when the data are naturally restricted to a proper subset of the real space. This problem is complicated by typically intractable normalizing constants. Score matching provides a powerful tool for estimating densities with such intractable normalizing constants but as originally proposed is limited to densities on [Formula: see text] and [Formula: see text]. In this paper, we offer a natural generalization of score matching that accommodates densities supported on a very general class of domains. We apply the framework to truncated graphical and pairwise interaction models and provide theoretical guarantees for the resulting estimators. We also generalize a recently proposed method from bounded to unbounded domains and empirically demonstrate the advantages of our method.</p>","PeriodicalId":45437,"journal":{"name":"Information and Inference-A Journal of the Ima","volume":"11 2","pages":"739-780"},"PeriodicalIF":1.4000,"publicationDate":"2021-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9203079/pdf/iaaa041.pdf","citationCount":"16","resultStr":"{\"title\":\"Generalized score matching for general domains.\",\"authors\":\"Shiqing Yu, Mathias Drton, Ali Shojaie\",\"doi\":\"10.1093/imaiai/iaaa041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Estimation of density functions supported on general domains arises when the data are naturally restricted to a proper subset of the real space. This problem is complicated by typically intractable normalizing constants. Score matching provides a powerful tool for estimating densities with such intractable normalizing constants but as originally proposed is limited to densities on [Formula: see text] and [Formula: see text]. In this paper, we offer a natural generalization of score matching that accommodates densities supported on a very general class of domains. We apply the framework to truncated graphical and pairwise interaction models and provide theoretical guarantees for the resulting estimators. We also generalize a recently proposed method from bounded to unbounded domains and empirically demonstrate the advantages of our method.</p>\",\"PeriodicalId\":45437,\"journal\":{\"name\":\"Information and Inference-A Journal of the Ima\",\"volume\":\"11 2\",\"pages\":\"739-780\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2021-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9203079/pdf/iaaa041.pdf\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information and Inference-A Journal of the Ima\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/imaiai/iaaa041\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/6/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information and Inference-A Journal of the Ima","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imaiai/iaaa041","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/6/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Estimation of density functions supported on general domains arises when the data are naturally restricted to a proper subset of the real space. This problem is complicated by typically intractable normalizing constants. Score matching provides a powerful tool for estimating densities with such intractable normalizing constants but as originally proposed is limited to densities on [Formula: see text] and [Formula: see text]. In this paper, we offer a natural generalization of score matching that accommodates densities supported on a very general class of domains. We apply the framework to truncated graphical and pairwise interaction models and provide theoretical guarantees for the resulting estimators. We also generalize a recently proposed method from bounded to unbounded domains and empirically demonstrate the advantages of our method.