用智能手机筛查左心室舒张功能障碍--基于单导联心电图的案例

IF 2.3 Q2 CARDIAC & CARDIOVASCULAR SYSTEMS Clinical Medicine Insights. Cardiology Pub Date : 2022-08-23 eCollection Date: 2022-01-01 DOI:10.1177/11795468221120088
Natalia Kuznetsova, Anastasiia Gubina, Zhanna Sagirova, Ines Dhif, Daria Gognieva, Anna Melnichuk, Oleg Orlov, Elena Syrkina, Vsevolod Sedov, Petr Chomakhidze, Hugo Saner, Philippe Kopylov
{"title":"用智能手机筛查左心室舒张功能障碍--基于单导联心电图的案例","authors":"Natalia Kuznetsova, Anastasiia Gubina, Zhanna Sagirova, Ines Dhif, Daria Gognieva, Anna Melnichuk, Oleg Orlov, Elena Syrkina, Vsevolod Sedov, Petr Chomakhidze, Hugo Saner, Philippe Kopylov","doi":"10.1177/11795468221120088","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>To investigate the potential of a signal processed by smartphone-case based on single lead electrocardiogram (ECG) for left ventricular diastolic dysfunction (LVDD) determination as a screening method.</p><p><strong>Methods and results: </strong>We included 446 subjects for sample learning and 259 patients for sample test aged 39 to 74 years for testing with 2D-echocardiography, tissue Doppler imaging and ECG using a smartphone-case based single lead ECG monitor for the assessment of LVDD. Spectral analysis of ECG signals (spECG) has been used in combination with advanced signal processing and artificial intelligence methods. Wavelengths slope, time intervals between waves, amplitudes at different points of the ECG complexes, energy of the ECG signal and asymmetry indices were analyzed. The QTc interval indicated significant diastolic dysfunction with a sensitivity of 78% and a specificity of 65%, a Tpeak parameter >590 ms with 63% and 58%, a T value off >695 ms with 63% and 74%, and QRSfi > 674 ms with 74% and 57%, respectively. A combination of the threshold values from all 4 parameters increased sensitivity to 86% and specificity to 70%, respectively (OR 11.7 [2.7-50.9], <i>P</i> < .001). Algorithm approbation have shown: Sensitivity-95.6%, Specificity-97.7%, Diagnostic accuracy-96.5% and Repeatability-98.8%.</p><p><strong>Conclusion: </strong>Our results indicate a great potential of a smartphone-case based on single lead ECG as novel screening tool for LVDD if spECG is used in combination with advanced signal processing and machine learning technologies.</p>","PeriodicalId":10419,"journal":{"name":"Clinical Medicine Insights. Cardiology","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2022-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/ef/6a/10.1177_11795468221120088.PMC9421020.pdf","citationCount":"0","resultStr":"{\"title\":\"Left Ventricular Diastolic Dysfunction Screening by a Smartphone-Case Based on Single Lead ECG.\",\"authors\":\"Natalia Kuznetsova, Anastasiia Gubina, Zhanna Sagirova, Ines Dhif, Daria Gognieva, Anna Melnichuk, Oleg Orlov, Elena Syrkina, Vsevolod Sedov, Petr Chomakhidze, Hugo Saner, Philippe Kopylov\",\"doi\":\"10.1177/11795468221120088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Aims: </strong>To investigate the potential of a signal processed by smartphone-case based on single lead electrocardiogram (ECG) for left ventricular diastolic dysfunction (LVDD) determination as a screening method.</p><p><strong>Methods and results: </strong>We included 446 subjects for sample learning and 259 patients for sample test aged 39 to 74 years for testing with 2D-echocardiography, tissue Doppler imaging and ECG using a smartphone-case based single lead ECG monitor for the assessment of LVDD. Spectral analysis of ECG signals (spECG) has been used in combination with advanced signal processing and artificial intelligence methods. Wavelengths slope, time intervals between waves, amplitudes at different points of the ECG complexes, energy of the ECG signal and asymmetry indices were analyzed. The QTc interval indicated significant diastolic dysfunction with a sensitivity of 78% and a specificity of 65%, a Tpeak parameter >590 ms with 63% and 58%, a T value off >695 ms with 63% and 74%, and QRSfi > 674 ms with 74% and 57%, respectively. A combination of the threshold values from all 4 parameters increased sensitivity to 86% and specificity to 70%, respectively (OR 11.7 [2.7-50.9], <i>P</i> < .001). Algorithm approbation have shown: Sensitivity-95.6%, Specificity-97.7%, Diagnostic accuracy-96.5% and Repeatability-98.8%.</p><p><strong>Conclusion: </strong>Our results indicate a great potential of a smartphone-case based on single lead ECG as novel screening tool for LVDD if spECG is used in combination with advanced signal processing and machine learning technologies.</p>\",\"PeriodicalId\":10419,\"journal\":{\"name\":\"Clinical Medicine Insights. Cardiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2022-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/ef/6a/10.1177_11795468221120088.PMC9421020.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical Medicine Insights. Cardiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/11795468221120088\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Medicine Insights. Cardiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/11795468221120088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

目的:研究基于单导联心电图(ECG)的智能手机外壳处理信号作为左心室舒张功能障碍(LVDD)筛查方法的潜力:我们在样本学习中纳入了 446 名受试者,在样本测试中纳入了 259 名患者,他们的年龄在 39 至 74 岁之间,我们使用基于智能手机外壳的单导联心电图监测仪进行了二维超声心动图、组织多普勒成像和心电图测试,以评估左心室舒张功能障碍。心电信号频谱分析(spECG)与先进的信号处理和人工智能方法结合使用。分析了波长斜率、波与波之间的时间间隔、心电图复极不同点的振幅、心电图信号的能量和不对称指数。QTc 间期表示明显的舒张功能障碍,灵敏度为 78%,特异度为 65%;T 峰参数 >590 毫秒,灵敏度为 63%,特异度为 58%;T 值偏离 >695 毫秒,灵敏度为 63%,特异度为 74%;QRSfi >674 毫秒,灵敏度为 74%,特异度为 57%。综合所有 4 个参数的阈值可将灵敏度提高到 86%,特异性提高到 70%(OR 11.7 [2.7-50.9],P 结论):我们的研究结果表明,如果将 spECG 与先进的信号处理和机器学习技术相结合使用,基于单导联心电图的智能手机病例作为 LVDD 的新型筛查工具将大有可为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Left Ventricular Diastolic Dysfunction Screening by a Smartphone-Case Based on Single Lead ECG.

Aims: To investigate the potential of a signal processed by smartphone-case based on single lead electrocardiogram (ECG) for left ventricular diastolic dysfunction (LVDD) determination as a screening method.

Methods and results: We included 446 subjects for sample learning and 259 patients for sample test aged 39 to 74 years for testing with 2D-echocardiography, tissue Doppler imaging and ECG using a smartphone-case based single lead ECG monitor for the assessment of LVDD. Spectral analysis of ECG signals (spECG) has been used in combination with advanced signal processing and artificial intelligence methods. Wavelengths slope, time intervals between waves, amplitudes at different points of the ECG complexes, energy of the ECG signal and asymmetry indices were analyzed. The QTc interval indicated significant diastolic dysfunction with a sensitivity of 78% and a specificity of 65%, a Tpeak parameter >590 ms with 63% and 58%, a T value off >695 ms with 63% and 74%, and QRSfi > 674 ms with 74% and 57%, respectively. A combination of the threshold values from all 4 parameters increased sensitivity to 86% and specificity to 70%, respectively (OR 11.7 [2.7-50.9], P < .001). Algorithm approbation have shown: Sensitivity-95.6%, Specificity-97.7%, Diagnostic accuracy-96.5% and Repeatability-98.8%.

Conclusion: Our results indicate a great potential of a smartphone-case based on single lead ECG as novel screening tool for LVDD if spECG is used in combination with advanced signal processing and machine learning technologies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Clinical Medicine Insights. Cardiology
Clinical Medicine Insights. Cardiology CARDIAC & CARDIOVASCULAR SYSTEMS-
CiteScore
5.20
自引率
3.30%
发文量
16
审稿时长
8 weeks
期刊最新文献
Classification of Infiltrative Heart Diseases MORAL-STAGE System. One-Year Prognosis Difference of Myocardial Infarction With or Without Coronary Obstruction in Developing Countries: Insights From the Moroccan Experience. The Impact of a Medication Therapy Management Service on the Outcomes of Hypertension Treatment Follow-Up Care in an Ethiopian Tertiary Hospital: A Pre-Post Interventional Study. Pulmonary Hypertension and Right Ventricle: A Pathophysiological Insight. Influence of Previous Coronary Artery Bypass Grafting on Clinical Outcomes After Percutaneous Coronary Intervention: A Meta-Analysis of 250 684 Patients.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1