氧化应激-线粒体介导的两种不同牛肌肉衰老过程中嫩化的比较

IF 4.1 Q2 FOOD SCIENCE & TECHNOLOGY Food Chemistry Molecular Sciences Pub Date : 2022-12-30 DOI:10.1016/j.fochms.2022.100131
Zhenjiang Ding , Qichao Wei , Chunmei Liu , Chunhui Zhang , Feng Huang
{"title":"氧化应激-线粒体介导的两种不同牛肌肉衰老过程中嫩化的比较","authors":"Zhenjiang Ding ,&nbsp;Qichao Wei ,&nbsp;Chunmei Liu ,&nbsp;Chunhui Zhang ,&nbsp;Feng Huang","doi":"10.1016/j.fochms.2022.100131","DOIUrl":null,"url":null,"abstract":"<div><p>The aim of this study was to investigate the differences in the effects of mitochondria-involved energy metabolism and caspases activation on postmortem tenderness in different muscle fiber types. Beef <em>Longissimus thoracis</em> (LT) and <em>Psoas major</em> (PM) muscles showed significant difference in mitochondrial function. Our data revealed that PM suffered from higher levels of reactive oxygen species (ROS) earlier than LT, causing faster mitochondrial swelling and rupture. Additionally, faster metabolism of ATP-related compounds and activation of caspase-9 appeared in PM, but the activity of caspase-3 in PM was lower than that in LT. Differences in myofibril fragmentation index (MFI) of LT and PM at different aging stages suggested that energy metabolism and caspases activities may play a role in tenderness at different aging stages. These results indicated that oxidative stress-mitochondria-mediated tenderization process could be muscle-specific.</p></div>","PeriodicalId":34477,"journal":{"name":"Food Chemistry Molecular Sciences","volume":"5 ","pages":"Article 100131"},"PeriodicalIF":4.1000,"publicationDate":"2022-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/82/56/main.PMC9428911.pdf","citationCount":"1","resultStr":"{\"title\":\"Comparison of oxidative stress-mitochondria-mediated tenderization in two different bovine muscles during aging\",\"authors\":\"Zhenjiang Ding ,&nbsp;Qichao Wei ,&nbsp;Chunmei Liu ,&nbsp;Chunhui Zhang ,&nbsp;Feng Huang\",\"doi\":\"10.1016/j.fochms.2022.100131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The aim of this study was to investigate the differences in the effects of mitochondria-involved energy metabolism and caspases activation on postmortem tenderness in different muscle fiber types. Beef <em>Longissimus thoracis</em> (LT) and <em>Psoas major</em> (PM) muscles showed significant difference in mitochondrial function. Our data revealed that PM suffered from higher levels of reactive oxygen species (ROS) earlier than LT, causing faster mitochondrial swelling and rupture. Additionally, faster metabolism of ATP-related compounds and activation of caspase-9 appeared in PM, but the activity of caspase-3 in PM was lower than that in LT. Differences in myofibril fragmentation index (MFI) of LT and PM at different aging stages suggested that energy metabolism and caspases activities may play a role in tenderness at different aging stages. These results indicated that oxidative stress-mitochondria-mediated tenderization process could be muscle-specific.</p></div>\",\"PeriodicalId\":34477,\"journal\":{\"name\":\"Food Chemistry Molecular Sciences\",\"volume\":\"5 \",\"pages\":\"Article 100131\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2022-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/82/56/main.PMC9428911.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Chemistry Molecular Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666566222000594\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry Molecular Sciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666566222000594","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 1

摘要

本研究的目的是探讨线粒体参与的能量代谢和半胱天冬酶激活对不同肌肉纤维类型死后压痛的影响差异。牛肉胸最长肌(LT)和大腰肌(PM)线粒体功能差异显著。我们的数据显示,PM比LT更早遭受更高水平的活性氧(ROS),导致线粒体肿胀和破裂更快。此外,PM中atp相关化合物的代谢和caspase-9的激活均较快,而PM中caspase-3的活性低于LT。不同衰老阶段LT和PM肌原纤维断裂指数(MFI)的差异提示不同衰老阶段能量代谢和caspase活性可能在嫩痛中起作用。这些结果表明,氧化应激-线粒体介导的嫩化过程可能是肌肉特异性的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparison of oxidative stress-mitochondria-mediated tenderization in two different bovine muscles during aging

The aim of this study was to investigate the differences in the effects of mitochondria-involved energy metabolism and caspases activation on postmortem tenderness in different muscle fiber types. Beef Longissimus thoracis (LT) and Psoas major (PM) muscles showed significant difference in mitochondrial function. Our data revealed that PM suffered from higher levels of reactive oxygen species (ROS) earlier than LT, causing faster mitochondrial swelling and rupture. Additionally, faster metabolism of ATP-related compounds and activation of caspase-9 appeared in PM, but the activity of caspase-3 in PM was lower than that in LT. Differences in myofibril fragmentation index (MFI) of LT and PM at different aging stages suggested that energy metabolism and caspases activities may play a role in tenderness at different aging stages. These results indicated that oxidative stress-mitochondria-mediated tenderization process could be muscle-specific.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Food Chemistry Molecular Sciences
Food Chemistry Molecular Sciences Agricultural and Biological Sciences-Food Science
CiteScore
6.00
自引率
0.00%
发文量
83
审稿时长
82 days
期刊介绍: Food Chemistry: Molecular Sciences is one of three companion journals to the highly respected Food Chemistry. Food Chemistry: Molecular Sciences is an open access journal publishing research advancing the theory and practice of molecular sciences of foods. The types of articles considered are original research articles, analytical methods, comprehensive reviews and commentaries. Topics include: Molecular sciences relating to major and minor components of food (nutrients and bioactives) and their physiological, sensory, flavour, and microbiological aspects; data must be sufficient to demonstrate relevance to foods and as consumed by humans Changes in molecular composition or structure in foods occurring or induced during growth, distribution and processing (industrial or domestic) or as a result of human metabolism Quality, safety, authenticity and traceability of foods and packaging materials Valorisation of food waste arising from processing and exploitation of by-products Molecular sciences of additives, contaminants including agro-chemicals, together with their metabolism, food fate and benefit: risk to human health Novel analytical and computational (bioinformatics) methods related to foods as consumed, nutrients and bioactives, sensory, metabolic fate, and origins of foods. Articles must be concerned with new or novel methods or novel uses and must be applied to real-world samples to demonstrate robustness. Those dealing with significant improvements to existing methods or foods and commodities from different regions, and re-use of existing data will be considered, provided authors can establish sufficient originality.
期刊最新文献
A comprehensive study on the fruit quality of a late-ripening mutant variety of plum Novel SCAR markers for accurate diagnosis of toxic Chlorophyllum molybdites and C. globosum What do microRNA concentrations tell us about the mechanical damage and storage period of strawberry fruits? Quantity of Cu(II) ions in a copper pot by a DNAzyme-based fluorescent sensor Microbial community and organic compounds composition analysis and the edible security of common buckwheat fermented via Kombucha consortium
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1