3d打印通风机多路复用器Vent-Lock演示了有限资源设置的平移设计。

IF 3.2 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING 3D printing in medicine Pub Date : 2022-09-14 DOI:10.1186/s41205-022-00148-6
Helen Xun, Christopher Shallal, Justin Unger, Runhan Tao, Alberto Torres, Michael Vladimirov, Jenna Frye, Mohit Singhala, Brockett Horne, Bo Soo Kim, Broc Burke, Michael Montana, Michael Talcott, Bradford Winters, Margaret Frisella, Bradley S Kushner, Justin M Sacks, James K Guest, Sung Hoon Kang, Julie Caffrey
{"title":"3d打印通风机多路复用器Vent-Lock演示了有限资源设置的平移设计。","authors":"Helen Xun,&nbsp;Christopher Shallal,&nbsp;Justin Unger,&nbsp;Runhan Tao,&nbsp;Alberto Torres,&nbsp;Michael Vladimirov,&nbsp;Jenna Frye,&nbsp;Mohit Singhala,&nbsp;Brockett Horne,&nbsp;Bo Soo Kim,&nbsp;Broc Burke,&nbsp;Michael Montana,&nbsp;Michael Talcott,&nbsp;Bradford Winters,&nbsp;Margaret Frisella,&nbsp;Bradley S Kushner,&nbsp;Justin M Sacks,&nbsp;James K Guest,&nbsp;Sung Hoon Kang,&nbsp;Julie Caffrey","doi":"10.1186/s41205-022-00148-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Mechanical ventilators are essential to patients who become critically ill with acute respiratory distress syndrome (ARDS), and shortages have been reported due to the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).</p><p><strong>Methods: </strong>We utilized 3D printing (3DP) technology to rapidly prototype and test critical components for a novel ventilator multiplexer system, Vent-Lock, to split one ventilator or anesthesia gas machine between two patients. FloRest, a novel 3DP flow restrictor, provides clinicians control of tidal volumes and positive end expiratory pressure (PEEP), using the 3DP manometer adaptor to monitor pressures. We tested the ventilator splitter circuit in simulation centers between artificial lungs and used an anesthesia gas machine to successfully ventilate two swine.</p><p><strong>Results: </strong>As one of the first studies to demonstrate splitting one anesthesia gas machine between two swine, we present proof-of-concept of a de novo, closed, multiplexing system, with flow restriction for potential individualized patient therapy.</p><p><strong>Conclusions: </strong>While possible, due to the complexity, need for experienced operators, and associated risks, ventilator multiplexing should only be reserved for urgent situations with no other alternatives. Our report underscores the initial design and engineering considerations required for rapid medical device prototyping via 3D printing in limited resource environments, including considerations for design, material selection, production, and distribution. We note that optimization of engineering may minimize 3D printing production risks but may not address the inherent risks of the device or change its indications. Thus, our case report provides insights to inform future rapid prototyping of medical devices.</p>","PeriodicalId":72036,"journal":{"name":"3D printing in medicine","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2022-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9471031/pdf/","citationCount":"1","resultStr":"{\"title\":\"Translational design for limited resource settings as demonstrated by Vent-Lock, a 3D-printed ventilator multiplexer.\",\"authors\":\"Helen Xun,&nbsp;Christopher Shallal,&nbsp;Justin Unger,&nbsp;Runhan Tao,&nbsp;Alberto Torres,&nbsp;Michael Vladimirov,&nbsp;Jenna Frye,&nbsp;Mohit Singhala,&nbsp;Brockett Horne,&nbsp;Bo Soo Kim,&nbsp;Broc Burke,&nbsp;Michael Montana,&nbsp;Michael Talcott,&nbsp;Bradford Winters,&nbsp;Margaret Frisella,&nbsp;Bradley S Kushner,&nbsp;Justin M Sacks,&nbsp;James K Guest,&nbsp;Sung Hoon Kang,&nbsp;Julie Caffrey\",\"doi\":\"10.1186/s41205-022-00148-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Mechanical ventilators are essential to patients who become critically ill with acute respiratory distress syndrome (ARDS), and shortages have been reported due to the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).</p><p><strong>Methods: </strong>We utilized 3D printing (3DP) technology to rapidly prototype and test critical components for a novel ventilator multiplexer system, Vent-Lock, to split one ventilator or anesthesia gas machine between two patients. FloRest, a novel 3DP flow restrictor, provides clinicians control of tidal volumes and positive end expiratory pressure (PEEP), using the 3DP manometer adaptor to monitor pressures. We tested the ventilator splitter circuit in simulation centers between artificial lungs and used an anesthesia gas machine to successfully ventilate two swine.</p><p><strong>Results: </strong>As one of the first studies to demonstrate splitting one anesthesia gas machine between two swine, we present proof-of-concept of a de novo, closed, multiplexing system, with flow restriction for potential individualized patient therapy.</p><p><strong>Conclusions: </strong>While possible, due to the complexity, need for experienced operators, and associated risks, ventilator multiplexing should only be reserved for urgent situations with no other alternatives. Our report underscores the initial design and engineering considerations required for rapid medical device prototyping via 3D printing in limited resource environments, including considerations for design, material selection, production, and distribution. We note that optimization of engineering may minimize 3D printing production risks but may not address the inherent risks of the device or change its indications. Thus, our case report provides insights to inform future rapid prototyping of medical devices.</p>\",\"PeriodicalId\":72036,\"journal\":{\"name\":\"3D printing in medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2022-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9471031/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"3D printing in medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s41205-022-00148-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"3D printing in medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s41205-022-00148-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 1

摘要

背景:机械呼吸机对危重急性呼吸窘迫综合征(ARDS)患者至关重要,由于新型严重急性呼吸综合征冠状病毒2 (SARS-CoV-2),已有机械呼吸机短缺的报道。方法:我们利用3D打印(3DP)技术快速原型和测试一种新型呼吸机多路复用系统的关键部件,Vent-Lock,在两名患者之间分离一个呼吸机或麻醉气体机。FloRest是一种新型的3DP限流器,使用3DP压力计适配器监测压力,为临床医生提供潮汐量和呼气末正压(PEEP)的控制。我们在人工肺之间的模拟中心测试了呼吸机分流电路,并使用麻醉气体机成功地为两只猪进行了通气。结果:作为第一个证明在两头猪之间分离一台麻醉气体机的研究之一,我们提出了一个全新的、封闭的、多路复用系统的概念证明,该系统具有流量限制,可用于潜在的个体化患者治疗。结论:虽然可能,但由于复杂性,需要经验丰富的操作人员,以及相关的风险,呼吸机复用应仅用于紧急情况下,没有其他选择。我们的报告强调了在有限资源环境下通过3D打印快速医疗设备原型所需的初始设计和工程考虑因素,包括设计,材料选择,生产和分销方面的考虑。我们注意到,工程优化可能会最大限度地降低3D打印生产风险,但可能无法解决设备的固有风险或改变其适应症。因此,我们的案例报告为未来医疗设备的快速原型设计提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Translational design for limited resource settings as demonstrated by Vent-Lock, a 3D-printed ventilator multiplexer.

Background: Mechanical ventilators are essential to patients who become critically ill with acute respiratory distress syndrome (ARDS), and shortages have been reported due to the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).

Methods: We utilized 3D printing (3DP) technology to rapidly prototype and test critical components for a novel ventilator multiplexer system, Vent-Lock, to split one ventilator or anesthesia gas machine between two patients. FloRest, a novel 3DP flow restrictor, provides clinicians control of tidal volumes and positive end expiratory pressure (PEEP), using the 3DP manometer adaptor to monitor pressures. We tested the ventilator splitter circuit in simulation centers between artificial lungs and used an anesthesia gas machine to successfully ventilate two swine.

Results: As one of the first studies to demonstrate splitting one anesthesia gas machine between two swine, we present proof-of-concept of a de novo, closed, multiplexing system, with flow restriction for potential individualized patient therapy.

Conclusions: While possible, due to the complexity, need for experienced operators, and associated risks, ventilator multiplexing should only be reserved for urgent situations with no other alternatives. Our report underscores the initial design and engineering considerations required for rapid medical device prototyping via 3D printing in limited resource environments, including considerations for design, material selection, production, and distribution. We note that optimization of engineering may minimize 3D printing production risks but may not address the inherent risks of the device or change its indications. Thus, our case report provides insights to inform future rapid prototyping of medical devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
5 weeks
期刊最新文献
Development and assessment of case-specific physical and augmented reality simulators for intracranial aneurysm clipping. Fast and accurate distal locking of interlocked intramedullary nails using computer-vision and a 3D printed device. Metamaterial design for aortic aneurysm simulation using 3D printing. 3D-printing inherently MRI-visible accessories in aiding MRI-guided biopsies. Effectiveness of a new 3D printed simulator for mitral transcatheter edge-to-edge repair in enhancing the confidence and procedural skills of the operator.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1