苦瓜5β,19-环氧葫芦-6,23(E)-二烯-3β,19(R),25-三醇对肝癌细胞的细胞毒活性及分子机制研究。

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2022-12-01 DOI:10.1080/13880209.2022.2077766
Mei-Kang Yuan, Ju-Wen Kao, Wen-Tung Wu, Chiy-Rong Chen, Chi-I Chang, Yu-Jen Wu
{"title":"苦瓜5β,19-环氧葫芦-6,23(E)-二烯-3β,19(R),25-三醇对肝癌细胞的细胞毒活性及分子机制研究。","authors":"Mei-Kang Yuan,&nbsp;Ju-Wen Kao,&nbsp;Wen-Tung Wu,&nbsp;Chiy-Rong Chen,&nbsp;Chi-I Chang,&nbsp;Yu-Jen Wu","doi":"10.1080/13880209.2022.2077766","DOIUrl":null,"url":null,"abstract":"<p><strong>Context: </strong><i>Momordica charantia</i> L. (Cucurbitaceae), known as bitter melon, is an edible fruit cultivated in the tropics. In this study, an active compound, 5β,19-epoxycucurbita-6,23(<i>E</i>)-diene-3β,19(<i>R</i>),25-triol (ECDT), isolated from <i>M. charantia</i> was investigated in regard to its cytotoxic effect on human hepatocellular carcinoma (HCC) cells.</p><p><strong>Objective: </strong>To examine the mechanisms of ECDT-induced apoptosis in HCC cells.</p><p><strong>Materials and methods: </strong>The inhibitive activity of ECDT on HA22T HCC cells was examined by MTT assay, colony formation assay, wound healing assay, TUNEL/DAPI staining, annexin V-fluorescein isothiocyanate/propidium iodide (PI) staining and JC-1 dye. HA22T cells were treated with ECDT (5, 10, 15, 20 and 25 μM) for 24 h, and the molecular mechanism of cells apoptosis was examined by Western blot. Cells treated with vehicle DMSO were used as the negative control.</p><p><strong>Results: </strong>ECDT inhibited the cell proliferation of HA22T cells in a dose-dependent manner. Flow cytometry showed that ECDT treatment at 10-20 μM increased early apoptosis by 10-14% and late apoptosis by 2-5%. Western blot revealed that ECDT treatment activated the mitochondrial-dependent apoptotic pathway, and ECDT-induced apoptosis was mediated by the caspase signalling pathway and activation of JNK and p38MAPK. Pre-treatment of cells with MAPK inhibitors (SB203580 or SP600125) reversed the ECDT-induced cell death, which further supported the involvement of the p38MAPK and JNK pathways.</p><p><strong>Discussion and conclusions: </strong>Our results indicated that ECDT can induce apoptosis through the p38MAPK and JNK pathways in HA22T cells. The findings suggested that ECDT has a valuable anticancer property with the potential to be developed as a new chemotherapeutic agent for the treatment of HCC.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9246111/pdf/","citationCount":"1","resultStr":"{\"title\":\"Investigation of cell cytotoxic activity and molecular mechanism of 5β,19-epoxycucurbita-6,23(<i>E</i>)-diene-3β,19(<i>R</i>),25-triol isolated from <i>Momordica charantia</i> on hepatoma cells.\",\"authors\":\"Mei-Kang Yuan,&nbsp;Ju-Wen Kao,&nbsp;Wen-Tung Wu,&nbsp;Chiy-Rong Chen,&nbsp;Chi-I Chang,&nbsp;Yu-Jen Wu\",\"doi\":\"10.1080/13880209.2022.2077766\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Context: </strong><i>Momordica charantia</i> L. (Cucurbitaceae), known as bitter melon, is an edible fruit cultivated in the tropics. In this study, an active compound, 5β,19-epoxycucurbita-6,23(<i>E</i>)-diene-3β,19(<i>R</i>),25-triol (ECDT), isolated from <i>M. charantia</i> was investigated in regard to its cytotoxic effect on human hepatocellular carcinoma (HCC) cells.</p><p><strong>Objective: </strong>To examine the mechanisms of ECDT-induced apoptosis in HCC cells.</p><p><strong>Materials and methods: </strong>The inhibitive activity of ECDT on HA22T HCC cells was examined by MTT assay, colony formation assay, wound healing assay, TUNEL/DAPI staining, annexin V-fluorescein isothiocyanate/propidium iodide (PI) staining and JC-1 dye. HA22T cells were treated with ECDT (5, 10, 15, 20 and 25 μM) for 24 h, and the molecular mechanism of cells apoptosis was examined by Western blot. Cells treated with vehicle DMSO were used as the negative control.</p><p><strong>Results: </strong>ECDT inhibited the cell proliferation of HA22T cells in a dose-dependent manner. Flow cytometry showed that ECDT treatment at 10-20 μM increased early apoptosis by 10-14% and late apoptosis by 2-5%. Western blot revealed that ECDT treatment activated the mitochondrial-dependent apoptotic pathway, and ECDT-induced apoptosis was mediated by the caspase signalling pathway and activation of JNK and p38MAPK. Pre-treatment of cells with MAPK inhibitors (SB203580 or SP600125) reversed the ECDT-induced cell death, which further supported the involvement of the p38MAPK and JNK pathways.</p><p><strong>Discussion and conclusions: </strong>Our results indicated that ECDT can induce apoptosis through the p38MAPK and JNK pathways in HA22T cells. The findings suggested that ECDT has a valuable anticancer property with the potential to be developed as a new chemotherapeutic agent for the treatment of HCC.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9246111/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/13880209.2022.2077766\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/13880209.2022.2077766","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 1

摘要

背景:苦瓜(葫芦科),俗称苦瓜,是热带地区种植的一种可食用水果。本研究研究了从M. charantia中分离的活性化合物5β,19-环氧葫芦-6,23(E)-二烯-3β,19(R),25-三醇(ECDT)对人肝细胞癌(HCC)细胞的毒性作用。目的:探讨ecdt诱导肝癌细胞凋亡的机制。材料与方法:采用MTT法、菌落形成法、创面愈合法、TUNEL/DAPI染色法、膜联蛋白v -异硫氰酸荧光素/碘化丙啶(PI)染色法和JC-1染色法检测ECDT对HA22T肝癌细胞的抑制作用。采用5、10、15、20、25 μM ECDT处理HA22T细胞24 h, Western blot检测细胞凋亡的分子机制。用DMSO处理的细胞作为阴性对照。结果:ECDT抑制HA22T细胞增殖呈剂量依赖性。流式细胞术显示,10 ~ 20 μM ECDT处理可使细胞早期凋亡增加10 ~ 14%,晚期凋亡增加2 ~ 5%。Western blot结果显示,ECDT处理激活了线粒体依赖性凋亡通路,ECDT诱导的凋亡是通过caspase信号通路和JNK、p38MAPK的激活介导的。用MAPK抑制剂(SB203580或SP600125)预处理细胞逆转了ecdt诱导的细胞死亡,这进一步支持了p38MAPK和JNK通路的参与。讨论与结论:我们的研究结果表明,ECDT可以通过p38MAPK和JNK途径诱导HA22T细胞凋亡。研究结果表明,ECDT具有宝贵的抗癌特性,有可能成为治疗HCC的一种新的化疗药物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Investigation of cell cytotoxic activity and molecular mechanism of 5β,19-epoxycucurbita-6,23(E)-diene-3β,19(R),25-triol isolated from Momordica charantia on hepatoma cells.

Context: Momordica charantia L. (Cucurbitaceae), known as bitter melon, is an edible fruit cultivated in the tropics. In this study, an active compound, 5β,19-epoxycucurbita-6,23(E)-diene-3β,19(R),25-triol (ECDT), isolated from M. charantia was investigated in regard to its cytotoxic effect on human hepatocellular carcinoma (HCC) cells.

Objective: To examine the mechanisms of ECDT-induced apoptosis in HCC cells.

Materials and methods: The inhibitive activity of ECDT on HA22T HCC cells was examined by MTT assay, colony formation assay, wound healing assay, TUNEL/DAPI staining, annexin V-fluorescein isothiocyanate/propidium iodide (PI) staining and JC-1 dye. HA22T cells were treated with ECDT (5, 10, 15, 20 and 25 μM) for 24 h, and the molecular mechanism of cells apoptosis was examined by Western blot. Cells treated with vehicle DMSO were used as the negative control.

Results: ECDT inhibited the cell proliferation of HA22T cells in a dose-dependent manner. Flow cytometry showed that ECDT treatment at 10-20 μM increased early apoptosis by 10-14% and late apoptosis by 2-5%. Western blot revealed that ECDT treatment activated the mitochondrial-dependent apoptotic pathway, and ECDT-induced apoptosis was mediated by the caspase signalling pathway and activation of JNK and p38MAPK. Pre-treatment of cells with MAPK inhibitors (SB203580 or SP600125) reversed the ECDT-induced cell death, which further supported the involvement of the p38MAPK and JNK pathways.

Discussion and conclusions: Our results indicated that ECDT can induce apoptosis through the p38MAPK and JNK pathways in HA22T cells. The findings suggested that ECDT has a valuable anticancer property with the potential to be developed as a new chemotherapeutic agent for the treatment of HCC.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Hyperbaric oxygen treatment promotes tendon-bone interface healing in a rabbit model of rotator cuff tears. Oxygen-ozone therapy for myocardial ischemic stroke and cardiovascular disorders. Comparative study on the anti-inflammatory and protective effects of different oxygen therapy regimens on lipopolysaccharide-induced acute lung injury in mice. Heme oxygenase/carbon monoxide system and development of the heart. Hyperbaric oxygen for moderate-to-severe traumatic brain injury: outcomes 5-8 years after injury.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1