Wei Long, Indrajit Patra, Firas Rahi Alhachami, Ulugbek Akhrarovich Sherbekov, Ali Majdi, Salwan Ali Abed
{"title":"基于 Aptamer 的纳米探针用于检测食品和环境样本中的食源性病毒:最新进展与挑战。","authors":"Wei Long, Indrajit Patra, Firas Rahi Alhachami, Ulugbek Akhrarovich Sherbekov, Ali Majdi, Salwan Ali Abed","doi":"10.1080/10408347.2022.2114785","DOIUrl":null,"url":null,"abstract":"<p><p>Accepting the fact that there is a huge number of virus particles in food that lead to several infectious diseases, eliminating of the foodborne virus from food is tangible. In 2020, the appearance of new SARS-CoV-2 variants had remarked the importance of food safety in our lives. Detection virus is a dynamic domain. Recently, many papers have tried to detect several foodborne viruses by using conventional sensing platforms including ELISA (enzyme-linked immunosorbent assay), PCR (polymerase chain reaction-based methods) and NASBA (nucleic acid sequence-based amplification). However, small sizes, low infective doses and discrete distribution of the foodborne virus have converted these microorganisms into the most challengeable pathogen in the food samples matrix. Foodborne virus detection exploiting aptamer-based biosensors has attracted considerable attention toward the numerous benefits of sourcing from aptamers in which a variety of viruses could be detected by conjugation of aptamer-virus. The development of multiple sensing methodologies and platforms in terms of aptasensor application in real food and environment samples has demonstrated promising results. In this review, we present the latest developments in myriad types of aptasensors (including electrochemical, optical and piezoelectric aptasensor) for the quantification of foodborne viruses. Working strategies, benefits and disadvantages of these platforms are argued.</p>","PeriodicalId":10744,"journal":{"name":"Critical reviews in analytical chemistry","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aptamer Based Nanoprobes for Detection of Foodborne Virus in Food and Environment Samples: Recent Progress and Challenges.\",\"authors\":\"Wei Long, Indrajit Patra, Firas Rahi Alhachami, Ulugbek Akhrarovich Sherbekov, Ali Majdi, Salwan Ali Abed\",\"doi\":\"10.1080/10408347.2022.2114785\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Accepting the fact that there is a huge number of virus particles in food that lead to several infectious diseases, eliminating of the foodborne virus from food is tangible. In 2020, the appearance of new SARS-CoV-2 variants had remarked the importance of food safety in our lives. Detection virus is a dynamic domain. Recently, many papers have tried to detect several foodborne viruses by using conventional sensing platforms including ELISA (enzyme-linked immunosorbent assay), PCR (polymerase chain reaction-based methods) and NASBA (nucleic acid sequence-based amplification). However, small sizes, low infective doses and discrete distribution of the foodborne virus have converted these microorganisms into the most challengeable pathogen in the food samples matrix. Foodborne virus detection exploiting aptamer-based biosensors has attracted considerable attention toward the numerous benefits of sourcing from aptamers in which a variety of viruses could be detected by conjugation of aptamer-virus. The development of multiple sensing methodologies and platforms in terms of aptasensor application in real food and environment samples has demonstrated promising results. In this review, we present the latest developments in myriad types of aptasensors (including electrochemical, optical and piezoelectric aptasensor) for the quantification of foodborne viruses. Working strategies, benefits and disadvantages of these platforms are argued.</p>\",\"PeriodicalId\":10744,\"journal\":{\"name\":\"Critical reviews in analytical chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Critical reviews in analytical chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1080/10408347.2022.2114785\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/8/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical reviews in analytical chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1080/10408347.2022.2114785","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/8/23 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Aptamer Based Nanoprobes for Detection of Foodborne Virus in Food and Environment Samples: Recent Progress and Challenges.
Accepting the fact that there is a huge number of virus particles in food that lead to several infectious diseases, eliminating of the foodborne virus from food is tangible. In 2020, the appearance of new SARS-CoV-2 variants had remarked the importance of food safety in our lives. Detection virus is a dynamic domain. Recently, many papers have tried to detect several foodborne viruses by using conventional sensing platforms including ELISA (enzyme-linked immunosorbent assay), PCR (polymerase chain reaction-based methods) and NASBA (nucleic acid sequence-based amplification). However, small sizes, low infective doses and discrete distribution of the foodborne virus have converted these microorganisms into the most challengeable pathogen in the food samples matrix. Foodborne virus detection exploiting aptamer-based biosensors has attracted considerable attention toward the numerous benefits of sourcing from aptamers in which a variety of viruses could be detected by conjugation of aptamer-virus. The development of multiple sensing methodologies and platforms in terms of aptasensor application in real food and environment samples has demonstrated promising results. In this review, we present the latest developments in myriad types of aptasensors (including electrochemical, optical and piezoelectric aptasensor) for the quantification of foodborne viruses. Working strategies, benefits and disadvantages of these platforms are argued.
期刊介绍:
Critical Reviews in Analytical Chemistry continues to be a dependable resource for both the expert and the student by providing in-depth, scholarly, insightful reviews of important topics within the discipline of analytical chemistry and related measurement sciences. The journal exclusively publishes review articles that illuminate the underlying science, that evaluate the field''s status by putting recent developments into proper perspective and context, and that speculate on possible future developments. A limited number of articles are of a "tutorial" format written by experts for scientists seeking introduction or clarification in a new area.
This journal serves as a forum for linking various underlying components in broad and interdisciplinary means, while maintaining balance between applied and fundamental research. Topics we are interested in receiving reviews on are the following:
· chemical analysis;
· instrumentation;
· chemometrics;
· analytical biochemistry;
· medicinal analysis;
· forensics;
· environmental sciences;
· applied physics;
· and material science.