Jitendra Kumar Sundaray , Sangita Dixit , Ashraf Rather , Kiran D. Rasal , Lakshman Sahoo
{"title":"水产养殖组学:最新的研究现状和数据分析","authors":"Jitendra Kumar Sundaray , Sangita Dixit , Ashraf Rather , Kiran D. Rasal , Lakshman Sahoo","doi":"10.1016/j.margen.2022.100967","DOIUrl":null,"url":null,"abstract":"<div><p>Aquaculture is the fast-growing agricultural sector and has the ability to meet the growing demand for protein nutritional security for future population. In future aquaculture is going to be the major source of fish proteins as capture fisheries reached at its maximum. However, several challenges need to overcome such as lack of genetically improved strains/varieties, lack of species-specific feed/functional feed, round the year availability of quality fish seed, pollution of ecosystems and increased frequencies of disease occurrence etc. In recent years, the continuous development of high throughput sequencing<span><span><span><span> technology has revolutionized the biological sciences and provided necessary tools. Application of ‘omics’ in aquaculture research have been successfully used to resolve several productive and reproductive issues and thus ensure its sustainability and profitability. To date, high quality draft genomes of over fifty fish species have been generated and successfully used to develop large number of </span>single nucleotide polymorphism markers (SNPs), marker panels and other genomic resources etc in several aquaculture species. Similarly, </span>transcriptome<span><span> profiling and miRNAs<span> analysis have been used in aquaculture research to identify key transcripts and expression analysis of candidate genes/miRNAs involved in reproduction, immunity, growth, development, stress toxicology and disease. Metagenome<span><span> analysis emerged as a promising scientific tool to analyze the complex genomes contained within microbial communities. </span>Metagenomics has been successfully used in the aquaculture sector to identify novel and potential </span></span></span>pathogens<span>, antibiotic resistance genes, microbial roles in microcosms, microbial communities forming biofloc, </span></span></span>probiotics etc. In the current review, we discussed application of high-throughput technologies (NGS) in the aquaculture sector.</span></p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Aquaculture omics: An update on the current status of research and data analysis\",\"authors\":\"Jitendra Kumar Sundaray , Sangita Dixit , Ashraf Rather , Kiran D. Rasal , Lakshman Sahoo\",\"doi\":\"10.1016/j.margen.2022.100967\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Aquaculture is the fast-growing agricultural sector and has the ability to meet the growing demand for protein nutritional security for future population. In future aquaculture is going to be the major source of fish proteins as capture fisheries reached at its maximum. However, several challenges need to overcome such as lack of genetically improved strains/varieties, lack of species-specific feed/functional feed, round the year availability of quality fish seed, pollution of ecosystems and increased frequencies of disease occurrence etc. In recent years, the continuous development of high throughput sequencing<span><span><span><span> technology has revolutionized the biological sciences and provided necessary tools. Application of ‘omics’ in aquaculture research have been successfully used to resolve several productive and reproductive issues and thus ensure its sustainability and profitability. To date, high quality draft genomes of over fifty fish species have been generated and successfully used to develop large number of </span>single nucleotide polymorphism markers (SNPs), marker panels and other genomic resources etc in several aquaculture species. Similarly, </span>transcriptome<span><span> profiling and miRNAs<span> analysis have been used in aquaculture research to identify key transcripts and expression analysis of candidate genes/miRNAs involved in reproduction, immunity, growth, development, stress toxicology and disease. Metagenome<span><span> analysis emerged as a promising scientific tool to analyze the complex genomes contained within microbial communities. </span>Metagenomics has been successfully used in the aquaculture sector to identify novel and potential </span></span></span>pathogens<span>, antibiotic resistance genes, microbial roles in microcosms, microbial communities forming biofloc, </span></span></span>probiotics etc. In the current review, we discussed application of high-throughput technologies (NGS) in the aquaculture sector.</span></p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1874778722000459\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1874778722000459","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Aquaculture omics: An update on the current status of research and data analysis
Aquaculture is the fast-growing agricultural sector and has the ability to meet the growing demand for protein nutritional security for future population. In future aquaculture is going to be the major source of fish proteins as capture fisheries reached at its maximum. However, several challenges need to overcome such as lack of genetically improved strains/varieties, lack of species-specific feed/functional feed, round the year availability of quality fish seed, pollution of ecosystems and increased frequencies of disease occurrence etc. In recent years, the continuous development of high throughput sequencing technology has revolutionized the biological sciences and provided necessary tools. Application of ‘omics’ in aquaculture research have been successfully used to resolve several productive and reproductive issues and thus ensure its sustainability and profitability. To date, high quality draft genomes of over fifty fish species have been generated and successfully used to develop large number of single nucleotide polymorphism markers (SNPs), marker panels and other genomic resources etc in several aquaculture species. Similarly, transcriptome profiling and miRNAs analysis have been used in aquaculture research to identify key transcripts and expression analysis of candidate genes/miRNAs involved in reproduction, immunity, growth, development, stress toxicology and disease. Metagenome analysis emerged as a promising scientific tool to analyze the complex genomes contained within microbial communities. Metagenomics has been successfully used in the aquaculture sector to identify novel and potential pathogens, antibiotic resistance genes, microbial roles in microcosms, microbial communities forming biofloc, probiotics etc. In the current review, we discussed application of high-throughput technologies (NGS) in the aquaculture sector.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.