Tim Sullivan, Magnus Nord, Doug Domalik, Magnus Ysander, Richard P Hermann
{"title":"一种评估安全信号强度和因果关系评估的结构化方法。","authors":"Tim Sullivan, Magnus Nord, Doug Domalik, Magnus Ysander, Richard P Hermann","doi":"10.1007/s40290-022-00436-w","DOIUrl":null,"url":null,"abstract":"<p><p>Causality assessment of safety signals observed with medicinal products is a foundational element of pharmacovigilance and regulatory practice, typically performed by a global introspection process. We have developed a novel, structured methodological framework to support the global introspection process for safety signal causality assessment. This Signal Assessment Guide (SAGe) tool was developed by AstraZeneca and is used internally, both to assess safety signal strength and to inform causality decisions related to safety signals. The term 'safety signal' refers to information arising from one or multiple sources, which suggests a new potentially causal association, or a new aspect of a known association, between an intervention and an adverse event. The key concept underlying the SAGe tool is that safety signal data can be reliably sorted into one of three categories: aggregate safety data, plausibility data, and case-level data. When applying the tool, an evidence grade score (Levels A, B, C, and D) is transparently assigned to the available data in each category. This information can then be summarised and presented for formal decision making regarding causality for safety signals. By using a transparent method to categorise the grade of evidence for causal association, with an option to additionally derive a quantitative strength of safety signal score, the SAGe tool can support the global introspection process for causality decisions, contributing to the quality of safety information for medicinal products provided to healthcare professionals and patients. Our anecdotal experience of using the SAGe tool at AstraZeneca is that it has resulted in more efficient and robust conversations regarding the strength of safety signals and the causality question. Wider use of the SAGe tool may bring increased levels of transparency and consistency to the evaluation of safety signals.</p>","PeriodicalId":19778,"journal":{"name":"Pharmaceutical Medicine","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/30/50/40290_2022_Article_436.PMC9334375.pdf","citationCount":"0","resultStr":"{\"title\":\"A Structured Methodology to Assess Safety Signal Strength and Inform Causality Assessment.\",\"authors\":\"Tim Sullivan, Magnus Nord, Doug Domalik, Magnus Ysander, Richard P Hermann\",\"doi\":\"10.1007/s40290-022-00436-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Causality assessment of safety signals observed with medicinal products is a foundational element of pharmacovigilance and regulatory practice, typically performed by a global introspection process. We have developed a novel, structured methodological framework to support the global introspection process for safety signal causality assessment. This Signal Assessment Guide (SAGe) tool was developed by AstraZeneca and is used internally, both to assess safety signal strength and to inform causality decisions related to safety signals. The term 'safety signal' refers to information arising from one or multiple sources, which suggests a new potentially causal association, or a new aspect of a known association, between an intervention and an adverse event. The key concept underlying the SAGe tool is that safety signal data can be reliably sorted into one of three categories: aggregate safety data, plausibility data, and case-level data. When applying the tool, an evidence grade score (Levels A, B, C, and D) is transparently assigned to the available data in each category. This information can then be summarised and presented for formal decision making regarding causality for safety signals. By using a transparent method to categorise the grade of evidence for causal association, with an option to additionally derive a quantitative strength of safety signal score, the SAGe tool can support the global introspection process for causality decisions, contributing to the quality of safety information for medicinal products provided to healthcare professionals and patients. Our anecdotal experience of using the SAGe tool at AstraZeneca is that it has resulted in more efficient and robust conversations regarding the strength of safety signals and the causality question. Wider use of the SAGe tool may bring increased levels of transparency and consistency to the evaluation of safety signals.</p>\",\"PeriodicalId\":19778,\"journal\":{\"name\":\"Pharmaceutical Medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/30/50/40290_2022_Article_436.PMC9334375.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceutical Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s40290-022-00436-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/7/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40290-022-00436-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/7/4 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
A Structured Methodology to Assess Safety Signal Strength and Inform Causality Assessment.
Causality assessment of safety signals observed with medicinal products is a foundational element of pharmacovigilance and regulatory practice, typically performed by a global introspection process. We have developed a novel, structured methodological framework to support the global introspection process for safety signal causality assessment. This Signal Assessment Guide (SAGe) tool was developed by AstraZeneca and is used internally, both to assess safety signal strength and to inform causality decisions related to safety signals. The term 'safety signal' refers to information arising from one or multiple sources, which suggests a new potentially causal association, or a new aspect of a known association, between an intervention and an adverse event. The key concept underlying the SAGe tool is that safety signal data can be reliably sorted into one of three categories: aggregate safety data, plausibility data, and case-level data. When applying the tool, an evidence grade score (Levels A, B, C, and D) is transparently assigned to the available data in each category. This information can then be summarised and presented for formal decision making regarding causality for safety signals. By using a transparent method to categorise the grade of evidence for causal association, with an option to additionally derive a quantitative strength of safety signal score, the SAGe tool can support the global introspection process for causality decisions, contributing to the quality of safety information for medicinal products provided to healthcare professionals and patients. Our anecdotal experience of using the SAGe tool at AstraZeneca is that it has resulted in more efficient and robust conversations regarding the strength of safety signals and the causality question. Wider use of the SAGe tool may bring increased levels of transparency and consistency to the evaluation of safety signals.
期刊介绍:
Pharmaceutical Medicine is a specialist discipline concerned with medical aspects of the discovery, development, evaluation, registration, regulation, monitoring, marketing, distribution and pricing of medicines, drug-device and drug-diagnostic combinations. The Journal disseminates information to support the community of professionals working in these highly inter-related functions. Key areas include translational medicine, clinical trial design, pharmacovigilance, clinical toxicology, drug regulation, clinical pharmacology, biostatistics and pharmacoeconomics. The Journal includes:Overviews of contentious or emerging issues.Comprehensive narrative reviews that provide an authoritative source of information on topical issues.Systematic reviews that collate empirical evidence to answer a specific research question, using explicit, systematic methods as outlined by PRISMA statement.Original research articles reporting the results of well-designed studies with a strong link to wider areas of clinical research.Additional digital features (including animated abstracts, video abstracts, slide decks, audio slides, instructional videos, infographics, podcasts and animations) can be published with articles; these are designed to increase the visibility, readership and educational value of the journal’s content. In addition, articles published in Pharmaceutical Medicine may be accompanied by plain language summaries to assist readers who have some knowledge of, but not in-depth expertise in, the area to understand important medical advances.All manuscripts are subject to peer review by international experts. Letters to the Editor are welcomed and will be considered for publication.