百里醌改善阿米卡星诱导的大鼠脑组织氧化损伤。

IF 1.6 4区 生物学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Biotechnic & Histochemistry Pub Date : 2023-01-01 Epub Date: 2022-07-11 DOI:10.1080/10520295.2022.2087905
Sedat Bilgiç, Meltem Özgöçmen, Mehmet Kaya Ozer
{"title":"百里醌改善阿米卡星诱导的大鼠脑组织氧化损伤。","authors":"Sedat Bilgiç,&nbsp;Meltem Özgöçmen,&nbsp;Mehmet Kaya Ozer","doi":"10.1080/10520295.2022.2087905","DOIUrl":null,"url":null,"abstract":"<p><p>We investigated the potential neuroprotective effects of thymoquinone (TQ) on amikacin (AK) induced oxidative damage in rat brain. We used 21 male rats divided randomly into three equal groups. The control group was injected intraperitoneally (i.p.) with 0.5 ml 0.9% aqueous NaCl and given 1 ml 0.9% aqueous NaCl orally. The AK group was administered 1.2 g/kg aqueous AK i.p. as a single dose on the day 3 of the study. The AK + TQ group was given a single 1.2 g/kg dose of AK i.p. on the day 3 of the study plus 40 mg/kg/day TQ by oral gavage daily. Treatment with TQ increased serum ferritin and decreased serum calcium levels significantly. TQ also decreased NADPH oxidase-2, NADPH oxidase-4, and caspase-3 levels. Decreased malondialdehyde (MDA) levels and increased superoxide dismutase (SOD) and catalase (CAT) activities were detected in the AK + TQ group compared to the AK group. TQ administration inhibited lipid peroxide formation and blocked oxidative reactions, which reduced the MDA level and increased SOD and CAT activities induced by AK. Oxidative damage caused by AK was ameliorated by TQ treatment owing to its antioxidative and anti-apoptotic effects. TQ may be a potential therapeutic agent for reducing the severity of AK induced oxidative damage to the brain.</p>","PeriodicalId":8970,"journal":{"name":"Biotechnic & Histochemistry","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Thymoquinone ameliorates amikacin induced oxidative damage in rat brain tissue.\",\"authors\":\"Sedat Bilgiç,&nbsp;Meltem Özgöçmen,&nbsp;Mehmet Kaya Ozer\",\"doi\":\"10.1080/10520295.2022.2087905\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We investigated the potential neuroprotective effects of thymoquinone (TQ) on amikacin (AK) induced oxidative damage in rat brain. We used 21 male rats divided randomly into three equal groups. The control group was injected intraperitoneally (i.p.) with 0.5 ml 0.9% aqueous NaCl and given 1 ml 0.9% aqueous NaCl orally. The AK group was administered 1.2 g/kg aqueous AK i.p. as a single dose on the day 3 of the study. The AK + TQ group was given a single 1.2 g/kg dose of AK i.p. on the day 3 of the study plus 40 mg/kg/day TQ by oral gavage daily. Treatment with TQ increased serum ferritin and decreased serum calcium levels significantly. TQ also decreased NADPH oxidase-2, NADPH oxidase-4, and caspase-3 levels. Decreased malondialdehyde (MDA) levels and increased superoxide dismutase (SOD) and catalase (CAT) activities were detected in the AK + TQ group compared to the AK group. TQ administration inhibited lipid peroxide formation and blocked oxidative reactions, which reduced the MDA level and increased SOD and CAT activities induced by AK. Oxidative damage caused by AK was ameliorated by TQ treatment owing to its antioxidative and anti-apoptotic effects. TQ may be a potential therapeutic agent for reducing the severity of AK induced oxidative damage to the brain.</p>\",\"PeriodicalId\":8970,\"journal\":{\"name\":\"Biotechnic & Histochemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnic & Histochemistry\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/10520295.2022.2087905\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/7/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnic & Histochemistry","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10520295.2022.2087905","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/7/11 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 3

摘要

我们研究了百里醌(TQ)对阿米卡星(AK)引起的大鼠脑氧化损伤的潜在神经保护作用。我们选用21只雄性大鼠,随机分为三组。对照组患者腹腔注射0.9%氯化钠0.5 ml, 0.9%氯化钠1 ml口服。AK组于研究第3天单次给药1.2 g/kg AK水溶液。AK + TQ组在研究第3天给予单次1.2 g/kg剂量的AK,每天口服40 mg/kg/天TQ。TQ治疗可显著提高血清铁蛋白水平,降低血清钙水平。TQ还能降低NADPH氧化酶-2、NADPH氧化酶-4和caspase-3水平。与AK组相比,AK + TQ组丙二醛(MDA)水平降低,超氧化物歧化酶(SOD)和过氧化氢酶(CAT)活性升高。TQ抑制脂质过氧化形成,阻断氧化反应,降低MDA水平,提高AK诱导的SOD和CAT活性。由于其抗氧化和抗凋亡作用,TQ处理可改善AK引起的氧化损伤。TQ可能是一种潜在的治疗药物,可以减轻AK诱导的脑氧化损伤的严重程度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Thymoquinone ameliorates amikacin induced oxidative damage in rat brain tissue.

We investigated the potential neuroprotective effects of thymoquinone (TQ) on amikacin (AK) induced oxidative damage in rat brain. We used 21 male rats divided randomly into three equal groups. The control group was injected intraperitoneally (i.p.) with 0.5 ml 0.9% aqueous NaCl and given 1 ml 0.9% aqueous NaCl orally. The AK group was administered 1.2 g/kg aqueous AK i.p. as a single dose on the day 3 of the study. The AK + TQ group was given a single 1.2 g/kg dose of AK i.p. on the day 3 of the study plus 40 mg/kg/day TQ by oral gavage daily. Treatment with TQ increased serum ferritin and decreased serum calcium levels significantly. TQ also decreased NADPH oxidase-2, NADPH oxidase-4, and caspase-3 levels. Decreased malondialdehyde (MDA) levels and increased superoxide dismutase (SOD) and catalase (CAT) activities were detected in the AK + TQ group compared to the AK group. TQ administration inhibited lipid peroxide formation and blocked oxidative reactions, which reduced the MDA level and increased SOD and CAT activities induced by AK. Oxidative damage caused by AK was ameliorated by TQ treatment owing to its antioxidative and anti-apoptotic effects. TQ may be a potential therapeutic agent for reducing the severity of AK induced oxidative damage to the brain.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biotechnic & Histochemistry
Biotechnic & Histochemistry 生物-生物工程与应用微生物
CiteScore
3.40
自引率
6.20%
发文量
46
审稿时长
6-12 weeks
期刊介绍: Biotechnic & Histochemistry (formerly Stain technology) is the official publication of the Biological Stain Commission. The journal has been in continuous publication since 1926. Biotechnic & Histochemistry is an interdisciplinary journal that embraces all aspects of techniques for visualizing biological processes and entities in cells, tissues and organisms; papers that describe experimental work that employs such investigative methods are appropriate for publication as well. Papers concerning topics as diverse as applications of histochemistry, immunohistochemistry, in situ hybridization, cytochemical probes, autoradiography, light and electron microscopy, tissue culture, in vivo and in vitro studies, image analysis, cytogenetics, automation or computerization of investigative procedures and other investigative approaches are appropriate for publication regardless of their length. Letters to the Editor and review articles concerning topics of special and current interest also are welcome.
期刊最新文献
Grape seed oil attenuates sodium arsenite-induced gastric, hepatic and colonic damage in Wistar rats. Comparison of the protective effects of silymarin and thymoquinone in the focal cerebral ischemia-reperfusion rat model. Effects of irisin and exercise on adropin and betatrophin in a new metabolic syndrome model. Romanowsky staining: history, recent advances and future prospects from a chemistry perspective. Protective effects of chlorogenic acid against cyclophosphamide induced liver injury in mice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1