基于编码局部二值模式的特征提取用于糖尿病视网膜病变的检测和分级。

IF 4.7 3区 医学 Q1 MEDICAL INFORMATICS Health Information Science and Systems Pub Date : 2022-06-29 eCollection Date: 2022-12-01 DOI:10.1007/s13755-022-00181-z
Mohamed A Berbar
{"title":"基于编码局部二值模式的特征提取用于糖尿病视网膜病变的检测和分级。","authors":"Mohamed A Berbar","doi":"10.1007/s13755-022-00181-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Reliable computer diagnosis of diabetic retinopathy (DR) is needed to rescue many with diabetes who may be under threat of blindness. This research aims to detect the presence of diabetic retinopathy in fundus images and grade the disease severity without lesion segmentation.</p><p><strong>Methods: </strong>To ensure that the fundus images are in a standard state of brightness, a series of preprocessing steps have been applied to the green channel image using histogram matching and a median filter. Then, contrast-limited adaptive histogram equalisation is performed, followed by the unsharp filter. The preprocessed image is divided into small blocks, and then each block is processed to extract uniform local binary patterns (LBPs) features. The extracted features are encoded, and the feature size is reduced to 3.5 percent of its original size. Classifiers like Support Vector Machine (SVM) and a proposed CNN model were used to classify retinal fundus images. The classification is abnormal or normal and to grade the severity of DR.</p><p><strong>Results: </strong>Our feature extraction method was tested on a binary classifier and resulted in an accuracy of 98.37% and 98.84% on the Messidor2 and EyePACS databases, respectively. The proposed system could grade DR severity into three grades (0: no DR, 1: mild DR, and 5: moderate, severe NPDR, and PDR). It obtains an F1-score of 0.9617 and an accuracy of 95.37% on the EyePACS database, and an F1-score of 0.9860 and an accuracy of 97.57% on the Messidor2 database. The resultant values are dependent on the selection of (neighbours, radius) pairs during the extraction of LBP features.</p><p><strong>Conclusions: </strong>This study's results proved that the preprocessing steps are significant and had a great effect on highlighting image features. The novel method of stacking and encoding the LBP values in the feature vector greatly affects results when using SVM or CNN for classification. The proposed system outperforms the state of the artwork. The proposed CNN model performs better than SVM.</p>","PeriodicalId":46312,"journal":{"name":"Health Information Science and Systems","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2022-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9243209/pdf/","citationCount":"10","resultStr":"{\"title\":\"Features extraction using encoded local binary pattern for detection and grading diabetic retinopathy.\",\"authors\":\"Mohamed A Berbar\",\"doi\":\"10.1007/s13755-022-00181-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Reliable computer diagnosis of diabetic retinopathy (DR) is needed to rescue many with diabetes who may be under threat of blindness. This research aims to detect the presence of diabetic retinopathy in fundus images and grade the disease severity without lesion segmentation.</p><p><strong>Methods: </strong>To ensure that the fundus images are in a standard state of brightness, a series of preprocessing steps have been applied to the green channel image using histogram matching and a median filter. Then, contrast-limited adaptive histogram equalisation is performed, followed by the unsharp filter. The preprocessed image is divided into small blocks, and then each block is processed to extract uniform local binary patterns (LBPs) features. The extracted features are encoded, and the feature size is reduced to 3.5 percent of its original size. Classifiers like Support Vector Machine (SVM) and a proposed CNN model were used to classify retinal fundus images. The classification is abnormal or normal and to grade the severity of DR.</p><p><strong>Results: </strong>Our feature extraction method was tested on a binary classifier and resulted in an accuracy of 98.37% and 98.84% on the Messidor2 and EyePACS databases, respectively. The proposed system could grade DR severity into three grades (0: no DR, 1: mild DR, and 5: moderate, severe NPDR, and PDR). It obtains an F1-score of 0.9617 and an accuracy of 95.37% on the EyePACS database, and an F1-score of 0.9860 and an accuracy of 97.57% on the Messidor2 database. The resultant values are dependent on the selection of (neighbours, radius) pairs during the extraction of LBP features.</p><p><strong>Conclusions: </strong>This study's results proved that the preprocessing steps are significant and had a great effect on highlighting image features. The novel method of stacking and encoding the LBP values in the feature vector greatly affects results when using SVM or CNN for classification. The proposed system outperforms the state of the artwork. The proposed CNN model performs better than SVM.</p>\",\"PeriodicalId\":46312,\"journal\":{\"name\":\"Health Information Science and Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2022-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9243209/pdf/\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Health Information Science and Systems\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s13755-022-00181-z\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/12/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICAL INFORMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health Information Science and Systems","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13755-022-00181-z","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/12/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
引用次数: 10

摘要

糖尿病视网膜病变(DR)需要可靠的计算机诊断,以拯救许多可能面临失明威胁的糖尿病患者。本研究旨在检测眼底图像中是否存在糖尿病视网膜病变,并在不进行病变分割的情况下对疾病的严重程度进行分级。方法:利用直方图匹配和中值滤波对绿色通道图像进行一系列预处理,保证眼底图像处于标准亮度状态。然后,进行对比度有限的自适应直方图均衡化,然后进行非锐化滤波。将预处理后的图像分成小块,然后对每个小块进行处理,提取均匀的局部二值模式(lbp)特征。对提取的特征进行编码,特征尺寸减小到原始尺寸的3.5%。使用支持向量机(SVM)和提出的CNN模型等分类器对视网膜眼底图像进行分类。结果:我们的特征提取方法在二元分类器上进行了测试,在Messidor2和EyePACS数据库上的准确率分别为98.37%和98.84%。该系统可以将DR的严重程度分为三个等级(0:无DR, 1:轻度DR, 5:中度,严重NPDR和PDR)。在EyePACS数据库上的f1得分为0.9617,准确率为95.37%;在Messidor2数据库上的f1得分为0.9860,准确率为97.57%。结果值依赖于LBP特征提取过程中(邻居,半径)对的选择。结论:本研究的结果证明了预处理步骤是显著的,对突出图像特征有很大的作用。在使用SVM或CNN进行分类时,对特征向量中的LBP值进行叠加和编码的新方法对分类结果有很大影响。所提出的系统优于现有的技术。本文提出的CNN模型性能优于SVM。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Features extraction using encoded local binary pattern for detection and grading diabetic retinopathy.

Introduction: Reliable computer diagnosis of diabetic retinopathy (DR) is needed to rescue many with diabetes who may be under threat of blindness. This research aims to detect the presence of diabetic retinopathy in fundus images and grade the disease severity without lesion segmentation.

Methods: To ensure that the fundus images are in a standard state of brightness, a series of preprocessing steps have been applied to the green channel image using histogram matching and a median filter. Then, contrast-limited adaptive histogram equalisation is performed, followed by the unsharp filter. The preprocessed image is divided into small blocks, and then each block is processed to extract uniform local binary patterns (LBPs) features. The extracted features are encoded, and the feature size is reduced to 3.5 percent of its original size. Classifiers like Support Vector Machine (SVM) and a proposed CNN model were used to classify retinal fundus images. The classification is abnormal or normal and to grade the severity of DR.

Results: Our feature extraction method was tested on a binary classifier and resulted in an accuracy of 98.37% and 98.84% on the Messidor2 and EyePACS databases, respectively. The proposed system could grade DR severity into three grades (0: no DR, 1: mild DR, and 5: moderate, severe NPDR, and PDR). It obtains an F1-score of 0.9617 and an accuracy of 95.37% on the EyePACS database, and an F1-score of 0.9860 and an accuracy of 97.57% on the Messidor2 database. The resultant values are dependent on the selection of (neighbours, radius) pairs during the extraction of LBP features.

Conclusions: This study's results proved that the preprocessing steps are significant and had a great effect on highlighting image features. The novel method of stacking and encoding the LBP values in the feature vector greatly affects results when using SVM or CNN for classification. The proposed system outperforms the state of the artwork. The proposed CNN model performs better than SVM.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.30
自引率
5.00%
发文量
30
期刊介绍: Health Information Science and Systems is a multidisciplinary journal that integrates artificial intelligence/computer science/information technology with health science and services, embracing information science research coupled with topics related to the modeling, design, development, integration and management of health information systems, smart health, artificial intelligence in medicine, and computer aided diagnosis, medical expert systems. The scope includes: i.) smart health, artificial Intelligence in medicine, computer aided diagnosis, medical image processing, medical expert systems ii.) medical big data, medical/health/biomedicine information resources such as patient medical records, devices and equipments, software and tools to capture, store, retrieve, process, analyze, optimize the use of information in the health domain, iii.) data management, data mining, and knowledge discovery, all of which play a key role in decision making, management of public health, examination of standards, privacy and security issues, iv.) development of new architectures and applications for health information systems.
期刊最新文献
Explainable federated learning scheme for secure healthcare data sharing. Comorbidity progression analysis: patient stratification and comorbidity prediction using temporal comorbidity network. Explainable depression symptom detection in social media. A lightweight network based on multi-feature pseudo-color mapping for arrhythmia recognition. Tree hole rescue: an AI approach for suicide risk detection and online suicide intervention.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1