Katta Ramesh, Dharmendra Tripathi, Muhammad Mubashir Bhatti, Kaouther Ghachem, Sami Ullah Khan, Lioua Kolsi
{"title":"电磁流体动力学生物纳米材料生理血管流动的数学建模与仿真。","authors":"Katta Ramesh, Dharmendra Tripathi, Muhammad Mubashir Bhatti, Kaouther Ghachem, Sami Ullah Khan, Lioua Kolsi","doi":"10.1177/22808000221114708","DOIUrl":null,"url":null,"abstract":"<p><p>Gold-based metal nanoparticles serve a key role in diagnosing and treating important illnesses such as cancer and infectious diseases. In consideration of this, the current work develops a mathematical model for viscoelastic nanofluid flow in the peristaltic microchannel. Nanofluid is considered as blood-based fluid suspended with gold nanoparticles. In the investigated geometry, various parametric effects such as Joule heating, magnetohydrodynamics, electroosmosis, and thermal radiation have been imposed. The governing equations of the model are analytically solved by using the lubrication theory where the wavelength of the channel is considered large and viscous force is considered more dominant as compared to the inertia force relating the applications in biological transport phenomena. The graphical findings for relevant parameters of interest are given. In the current analysis, the ranges of the parameters have been considered as: <math><mrow><mn>0</mn><mo><</mo><mi>κ</mi><mo><</mo><mn>6</mn><mo>,</mo><mn>0</mn><mo><</mo><msub><mi>λ</mi><mn>1</mn></msub><mo><</mo><mn>0</mn><mo>.</mo><mn>6</mn><mo>,</mo><mn>2</mn><mo><</mo><mi>M</mi><mo><</mo><mn>8</mn><mo>,</mo><mn>0</mn><mo><</mo><msub><mi>ζ</mi><mn>1</mn></msub><mo><</mo><mn>3</mn><mo>,</mo><mn>0</mn><mo><</mo><msub><mi>ζ</mi><mn>2</mn></msub><mo><</mo><mn>3</mn><mo>,</mo><mn>0</mn><mo>.</mo><mn>1</mn><mo><</mo><msub><mi>ϕ</mi><mn>1</mn></msub><mo><</mo><mn>0</mn><mo>.</mo><mn>4</mn><mo>,</mo><mn>0</mn><mo><</mo><mi>B</mi><mi>r</mi><mo><</mo><mn>3</mn><mo>,</mo><mn>0</mn><mo><</mo><mi>β</mi><mo><</mo><mn>3</mn><mo>,</mo><mn>0</mn><mo><</mo><mi>R</mi><mi>n</mi><mo><</mo><mn>0</mn><mo>.</mo><mn>3</mn><mspace></mspace><mi>and</mi><mspace></mspace><mn>0</mn><mo><</mo><mi>ϕ</mi><mo><</mo><mi>π</mi><mo>/</mo><mn>2</mn><mo>.</mo></mrow></math>The current results reveal that, A stronger magnetic field leads the enhancement in nanoparticle temperature and shear stress, and it reduces the velocity and trapping bolus. The nanoparticle temperature rises with the increasing parameters such as Brinkman number and Joule heating parameter.</p>","PeriodicalId":14985,"journal":{"name":"Journal of Applied Biomaterials & Functional Materials","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Mathematical modeling and simulation of electromagnetohydrodynamic bio-nanomaterial flow through physiological vessels.\",\"authors\":\"Katta Ramesh, Dharmendra Tripathi, Muhammad Mubashir Bhatti, Kaouther Ghachem, Sami Ullah Khan, Lioua Kolsi\",\"doi\":\"10.1177/22808000221114708\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Gold-based metal nanoparticles serve a key role in diagnosing and treating important illnesses such as cancer and infectious diseases. In consideration of this, the current work develops a mathematical model for viscoelastic nanofluid flow in the peristaltic microchannel. Nanofluid is considered as blood-based fluid suspended with gold nanoparticles. In the investigated geometry, various parametric effects such as Joule heating, magnetohydrodynamics, electroosmosis, and thermal radiation have been imposed. The governing equations of the model are analytically solved by using the lubrication theory where the wavelength of the channel is considered large and viscous force is considered more dominant as compared to the inertia force relating the applications in biological transport phenomena. The graphical findings for relevant parameters of interest are given. In the current analysis, the ranges of the parameters have been considered as: <math><mrow><mn>0</mn><mo><</mo><mi>κ</mi><mo><</mo><mn>6</mn><mo>,</mo><mn>0</mn><mo><</mo><msub><mi>λ</mi><mn>1</mn></msub><mo><</mo><mn>0</mn><mo>.</mo><mn>6</mn><mo>,</mo><mn>2</mn><mo><</mo><mi>M</mi><mo><</mo><mn>8</mn><mo>,</mo><mn>0</mn><mo><</mo><msub><mi>ζ</mi><mn>1</mn></msub><mo><</mo><mn>3</mn><mo>,</mo><mn>0</mn><mo><</mo><msub><mi>ζ</mi><mn>2</mn></msub><mo><</mo><mn>3</mn><mo>,</mo><mn>0</mn><mo>.</mo><mn>1</mn><mo><</mo><msub><mi>ϕ</mi><mn>1</mn></msub><mo><</mo><mn>0</mn><mo>.</mo><mn>4</mn><mo>,</mo><mn>0</mn><mo><</mo><mi>B</mi><mi>r</mi><mo><</mo><mn>3</mn><mo>,</mo><mn>0</mn><mo><</mo><mi>β</mi><mo><</mo><mn>3</mn><mo>,</mo><mn>0</mn><mo><</mo><mi>R</mi><mi>n</mi><mo><</mo><mn>0</mn><mo>.</mo><mn>3</mn><mspace></mspace><mi>and</mi><mspace></mspace><mn>0</mn><mo><</mo><mi>ϕ</mi><mo><</mo><mi>π</mi><mo>/</mo><mn>2</mn><mo>.</mo></mrow></math>The current results reveal that, A stronger magnetic field leads the enhancement in nanoparticle temperature and shear stress, and it reduces the velocity and trapping bolus. The nanoparticle temperature rises with the increasing parameters such as Brinkman number and Joule heating parameter.</p>\",\"PeriodicalId\":14985,\"journal\":{\"name\":\"Journal of Applied Biomaterials & Functional Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Biomaterials & Functional Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/22808000221114708\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Biomaterials & Functional Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/22808000221114708","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Mathematical modeling and simulation of electromagnetohydrodynamic bio-nanomaterial flow through physiological vessels.
Gold-based metal nanoparticles serve a key role in diagnosing and treating important illnesses such as cancer and infectious diseases. In consideration of this, the current work develops a mathematical model for viscoelastic nanofluid flow in the peristaltic microchannel. Nanofluid is considered as blood-based fluid suspended with gold nanoparticles. In the investigated geometry, various parametric effects such as Joule heating, magnetohydrodynamics, electroosmosis, and thermal radiation have been imposed. The governing equations of the model are analytically solved by using the lubrication theory where the wavelength of the channel is considered large and viscous force is considered more dominant as compared to the inertia force relating the applications in biological transport phenomena. The graphical findings for relevant parameters of interest are given. In the current analysis, the ranges of the parameters have been considered as: The current results reveal that, A stronger magnetic field leads the enhancement in nanoparticle temperature and shear stress, and it reduces the velocity and trapping bolus. The nanoparticle temperature rises with the increasing parameters such as Brinkman number and Joule heating parameter.
期刊介绍:
The Journal of Applied Biomaterials & Functional Materials (JABFM) is an open access, peer-reviewed, international journal considering the publication of original contributions, reviews and editorials dealing with clinical and laboratory investigations in the fast growing field of biomaterial sciences and functional materials.
The areas covered by the journal will include:
• Biomaterials / Materials for biomedical applications
• Functional materials
• Hybrid and composite materials
• Soft materials
• Hydrogels
• Nanomaterials
• Gene delivery
• Nonodevices
• Metamaterials
• Active coatings
• Surface functionalization
• Tissue engineering
• Cell delivery/cell encapsulation systems
• 3D printing materials
• Material characterization
• Biomechanics