{"title":"一种基于具身智能的运动目标搜索策略","authors":"Julian K. P. Tan;Chee Pin Tan;Surya G. Nurzaman","doi":"10.1162/artl_a_00375","DOIUrl":null,"url":null,"abstract":"Bacterial chemotaxis in unicellular Escherichia coli, the simplest biological creature, enables it to perform effective searching behaviour even with a single sensor, achieved via a sequence of “tumbling” and “swimming” behaviours guided by gradient information. Recent studies show that suitable random walk strategies may guide the behaviour in the absence of gradient information. This article presents a novel and minimalistic biologically inspired search strategy inspired by bacterial chemotaxis and embodied intelligence concept: a concept stating that intelligent behaviour is a result of the interaction among the “brain,” body morphology including the sensory sensitivity tuned by the morphology, and the environment. Specifically, we present bacterial chemotaxis inspired searching behaviour with and without gradient information based on biological fluctuation framework: a mathematical framework that explains how biological creatures utilize noises in their behaviour. Via extensive simulation of a single sensor mobile robot that searches for a moving target, we will demonstrate how the effectiveness of the search depends on the sensory sensitivity and the inherent random walk strategies produced by the brain of the robot, comprising Ballistic, Levy, Brownian, and Stationary search. The result demonstrates the importance of embodied intelligence even in a behaviour inspired by the simplest creature.","PeriodicalId":55574,"journal":{"name":"Artificial Life","volume":"28 3","pages":"348-368"},"PeriodicalIF":1.6000,"publicationDate":"2022-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Embodied Intelligence-Based Biologically Inspired Strategy for Searching a Moving Target\",\"authors\":\"Julian K. P. Tan;Chee Pin Tan;Surya G. Nurzaman\",\"doi\":\"10.1162/artl_a_00375\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bacterial chemotaxis in unicellular Escherichia coli, the simplest biological creature, enables it to perform effective searching behaviour even with a single sensor, achieved via a sequence of “tumbling” and “swimming” behaviours guided by gradient information. Recent studies show that suitable random walk strategies may guide the behaviour in the absence of gradient information. This article presents a novel and minimalistic biologically inspired search strategy inspired by bacterial chemotaxis and embodied intelligence concept: a concept stating that intelligent behaviour is a result of the interaction among the “brain,” body morphology including the sensory sensitivity tuned by the morphology, and the environment. Specifically, we present bacterial chemotaxis inspired searching behaviour with and without gradient information based on biological fluctuation framework: a mathematical framework that explains how biological creatures utilize noises in their behaviour. Via extensive simulation of a single sensor mobile robot that searches for a moving target, we will demonstrate how the effectiveness of the search depends on the sensory sensitivity and the inherent random walk strategies produced by the brain of the robot, comprising Ballistic, Levy, Brownian, and Stationary search. The result demonstrates the importance of embodied intelligence even in a behaviour inspired by the simplest creature.\",\"PeriodicalId\":55574,\"journal\":{\"name\":\"Artificial Life\",\"volume\":\"28 3\",\"pages\":\"348-368\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2022-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Life\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10301867/\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Life","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10301867/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
An Embodied Intelligence-Based Biologically Inspired Strategy for Searching a Moving Target
Bacterial chemotaxis in unicellular Escherichia coli, the simplest biological creature, enables it to perform effective searching behaviour even with a single sensor, achieved via a sequence of “tumbling” and “swimming” behaviours guided by gradient information. Recent studies show that suitable random walk strategies may guide the behaviour in the absence of gradient information. This article presents a novel and minimalistic biologically inspired search strategy inspired by bacterial chemotaxis and embodied intelligence concept: a concept stating that intelligent behaviour is a result of the interaction among the “brain,” body morphology including the sensory sensitivity tuned by the morphology, and the environment. Specifically, we present bacterial chemotaxis inspired searching behaviour with and without gradient information based on biological fluctuation framework: a mathematical framework that explains how biological creatures utilize noises in their behaviour. Via extensive simulation of a single sensor mobile robot that searches for a moving target, we will demonstrate how the effectiveness of the search depends on the sensory sensitivity and the inherent random walk strategies produced by the brain of the robot, comprising Ballistic, Levy, Brownian, and Stationary search. The result demonstrates the importance of embodied intelligence even in a behaviour inspired by the simplest creature.
期刊介绍:
Artificial Life, launched in the fall of 1993, has become the unifying forum for the exchange of scientific information on the study of artificial systems that exhibit the behavioral characteristics of natural living systems, through the synthesis or simulation using computational (software), robotic (hardware), and/or physicochemical (wetware) means. Each issue features cutting-edge research on artificial life that advances the state-of-the-art of our knowledge about various aspects of living systems such as:
Artificial chemistry and the origins of life
Self-assembly, growth, and development
Self-replication and self-repair
Systems and synthetic biology
Perception, cognition, and behavior
Embodiment and enactivism
Collective behaviors of swarms
Evolutionary and ecological dynamics
Open-endedness and creativity
Social organization and cultural evolution
Societal and technological implications
Philosophy and aesthetics
Applications to biology, medicine, business, education, or entertainment.