论反馈对分类的重要性:用自适应滤波模型回顾类别学习实验。

IF 1.2 4区 心理学 Q4 BEHAVIORAL SCIENCES Journal of Experimental Psychology-Animal Learning and Cognition Pub Date : 2022-10-01 DOI:10.1037/xan0000339
Nicolás Marchant, Sergio E Chaigneau
{"title":"论反馈对分类的重要性:用自适应滤波模型回顾类别学习实验。","authors":"Nicolás Marchant,&nbsp;Sergio E Chaigneau","doi":"10.1037/xan0000339","DOIUrl":null,"url":null,"abstract":"<p><p>Associative accounts of category learning have been, for the most part, abandoned in favor of cognitive explanations (e.g., similarity, explicit rules). In the current work, we implement an Adaptive Linear Filter (ALF) closely related to the Rescorla and Wagner learning rule, and use it to tackle three learning tasks that pose challenges to an associative view of category learning. Across three computational simulations, we show that the ALF is in fact able to make the predictions that seemed problematic. Notably, in our simulations we use exactly the same model and specifications, attesting to the generality of our account. We discuss the consequences of our findings for the category learning literature. (PsycInfo Database Record (c) 2022 APA, all rights reserved).</p>","PeriodicalId":54259,"journal":{"name":"Journal of Experimental Psychology-Animal Learning and Cognition","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the importance of feedback for categorization: Revisiting category learning experiments using an adaptive filter model.\",\"authors\":\"Nicolás Marchant,&nbsp;Sergio E Chaigneau\",\"doi\":\"10.1037/xan0000339\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Associative accounts of category learning have been, for the most part, abandoned in favor of cognitive explanations (e.g., similarity, explicit rules). In the current work, we implement an Adaptive Linear Filter (ALF) closely related to the Rescorla and Wagner learning rule, and use it to tackle three learning tasks that pose challenges to an associative view of category learning. Across three computational simulations, we show that the ALF is in fact able to make the predictions that seemed problematic. Notably, in our simulations we use exactly the same model and specifications, attesting to the generality of our account. We discuss the consequences of our findings for the category learning literature. (PsycInfo Database Record (c) 2022 APA, all rights reserved).</p>\",\"PeriodicalId\":54259,\"journal\":{\"name\":\"Journal of Experimental Psychology-Animal Learning and Cognition\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Experimental Psychology-Animal Learning and Cognition\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1037/xan0000339\",\"RegionNum\":4,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BEHAVIORAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Psychology-Animal Learning and Cognition","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1037/xan0000339","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

在很大程度上,类别学习的联想解释已经被抛弃,而倾向于认知解释(例如,相似性,明确规则)。在当前的工作中,我们实现了一个与Rescorla和Wagner学习规则密切相关的自适应线性滤波器(ALF),并使用它来解决对类别学习的联想观点构成挑战的三个学习任务。通过三个计算模拟,我们表明ALF实际上能够做出看起来有问题的预测。值得注意的是,在我们的模拟中,我们使用了完全相同的模型和规格,证明了我们的描述的普遍性。我们讨论了我们的发现对类别学习文献的影响。(PsycInfo Database Record (c) 2022 APA,版权所有)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On the importance of feedback for categorization: Revisiting category learning experiments using an adaptive filter model.

Associative accounts of category learning have been, for the most part, abandoned in favor of cognitive explanations (e.g., similarity, explicit rules). In the current work, we implement an Adaptive Linear Filter (ALF) closely related to the Rescorla and Wagner learning rule, and use it to tackle three learning tasks that pose challenges to an associative view of category learning. Across three computational simulations, we show that the ALF is in fact able to make the predictions that seemed problematic. Notably, in our simulations we use exactly the same model and specifications, attesting to the generality of our account. We discuss the consequences of our findings for the category learning literature. (PsycInfo Database Record (c) 2022 APA, all rights reserved).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Experimental Psychology-Animal Learning and Cognition
Journal of Experimental Psychology-Animal Learning and Cognition Psychology-Experimental and Cognitive Psychology
CiteScore
2.90
自引率
23.10%
发文量
39
期刊介绍: The Journal of Experimental Psychology: Animal Learning and Cognition publishes experimental and theoretical studies concerning all aspects of animal behavior processes.
期刊最新文献
Impact of equivalence class training on same/different learning by pigeons. Test performance in optional shift and configural acquired equivalence are positively correlated. Contextual modulation of human associative learning following novelty-facilitated extinction, counterconditioning, and conventional extinction. Both probability and rate of reinforcement can affect the acquisition and maintenance of conditioned responses. Dual-system free-operant avoidance: Extension of a theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1