Meltem Kutnu, Elif Tekin İşlerel, Nurcan Tunçbağ, Gülay Özcengiz
{"title":"枯草芽孢杆菌菌素合成过程中差异表达蛋白的比较生物学网络分析。","authors":"Meltem Kutnu, Elif Tekin İşlerel, Nurcan Tunçbağ, Gülay Özcengiz","doi":"10.1093/intbio/zyac010","DOIUrl":null,"url":null,"abstract":"<p><p>The Gram-positive bacterium Bacillus subtilis produces a diverse range of secondary metabolites with different structures and activities. Among them, bacilysin is an enzymatically synthesized dipeptide that consists of L-alanine and L-anticapsin. Previous research by our group has suggested bacilysin's role as a pleiotropic molecule in its producer, B. subtilis PY79. However, the nature of protein interactions in the absence of bacilysin has not been defined. In the present work, we constructed a protein-protein interaction subnetwork by using Omics Integrator based on our recent comparative proteomics data obtained from a bacilysin-silenced strain, OGU1. Functional enrichment analyses on the resulting networks pointed to certain putatively perturbed pathways such as citrate cycle, quorum sensing and secondary metabolite biosynthesis. Various molecules, which were absent from the experimental data, were included in the final network. We believe that this study can guide further experiments in the identification and confirmation of protein-protein interactions in B. subtilis.</p>","PeriodicalId":80,"journal":{"name":"Integrative Biology","volume":"14 5","pages":"99-110"},"PeriodicalIF":1.5000,"publicationDate":"2022-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative biological network analysis for differentially expressed proteins as a function of bacilysin biosynthesis in Bacillus subtilis.\",\"authors\":\"Meltem Kutnu, Elif Tekin İşlerel, Nurcan Tunçbağ, Gülay Özcengiz\",\"doi\":\"10.1093/intbio/zyac010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The Gram-positive bacterium Bacillus subtilis produces a diverse range of secondary metabolites with different structures and activities. Among them, bacilysin is an enzymatically synthesized dipeptide that consists of L-alanine and L-anticapsin. Previous research by our group has suggested bacilysin's role as a pleiotropic molecule in its producer, B. subtilis PY79. However, the nature of protein interactions in the absence of bacilysin has not been defined. In the present work, we constructed a protein-protein interaction subnetwork by using Omics Integrator based on our recent comparative proteomics data obtained from a bacilysin-silenced strain, OGU1. Functional enrichment analyses on the resulting networks pointed to certain putatively perturbed pathways such as citrate cycle, quorum sensing and secondary metabolite biosynthesis. Various molecules, which were absent from the experimental data, were included in the final network. We believe that this study can guide further experiments in the identification and confirmation of protein-protein interactions in B. subtilis.</p>\",\"PeriodicalId\":80,\"journal\":{\"name\":\"Integrative Biology\",\"volume\":\"14 5\",\"pages\":\"99-110\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Integrative Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/intbio/zyac010\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrative Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/intbio/zyac010","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Comparative biological network analysis for differentially expressed proteins as a function of bacilysin biosynthesis in Bacillus subtilis.
The Gram-positive bacterium Bacillus subtilis produces a diverse range of secondary metabolites with different structures and activities. Among them, bacilysin is an enzymatically synthesized dipeptide that consists of L-alanine and L-anticapsin. Previous research by our group has suggested bacilysin's role as a pleiotropic molecule in its producer, B. subtilis PY79. However, the nature of protein interactions in the absence of bacilysin has not been defined. In the present work, we constructed a protein-protein interaction subnetwork by using Omics Integrator based on our recent comparative proteomics data obtained from a bacilysin-silenced strain, OGU1. Functional enrichment analyses on the resulting networks pointed to certain putatively perturbed pathways such as citrate cycle, quorum sensing and secondary metabolite biosynthesis. Various molecules, which were absent from the experimental data, were included in the final network. We believe that this study can guide further experiments in the identification and confirmation of protein-protein interactions in B. subtilis.
期刊介绍:
Integrative Biology publishes original biological research based on innovative experimental and theoretical methodologies that answer biological questions. The journal is multi- and inter-disciplinary, calling upon expertise and technologies from the physical sciences, engineering, computation, imaging, and mathematics to address critical questions in biological systems.
Research using experimental or computational quantitative technologies to characterise biological systems at the molecular, cellular, tissue and population levels is welcomed. Of particular interest are submissions contributing to quantitative understanding of how component properties at one level in the dimensional scale (nano to micro) determine system behaviour at a higher level of complexity.
Studies of synthetic systems, whether used to elucidate fundamental principles of biological function or as the basis for novel applications are also of interest.