Jacqueline M Contento, Paige N Mass, Rohan N Kumthekar, Charles I Berul, Justin D Opfermann
{"title":"心包直视下多腔胸廓通道的设计与功能。","authors":"Jacqueline M Contento, Paige N Mass, Rohan N Kumthekar, Charles I Berul, Justin D Opfermann","doi":"10.1115/1.4054999","DOIUrl":null,"url":null,"abstract":"<p><p>Small vasculature, venous obstruction, or congenital anomalies can preclude transvenous access to the heart, often resulting in open chest surgery to implant cardiac therapy leads for pacing, defibrillation, or cardiac resynchronization. A minimally invasive approach under direct visualization could reduce tissue damage, minimize pain, shorten recovery time, and obviate the need for fluoroscopy. Therefore, PeriPath was designed as a single-use, low-cost pericardial access tool based on clinical requirements. Its mechanical design aids in safe placement of conductive leads to the pericardium using a modified Seldinger technique. The crossed working channels provide an optimal view of the surgical field under direct visualization. Finite element analysis (FEA) confirms that the device is likely not to fail under clinical working conditions. Mechanical testing demonstrates that the tensile strength of its components is sufficient for use, with minimal risk of fracture. The PeriPath procedure is also compatible with common lead implantation tools and can be readily adopted by interventional cardiologists and electrophysiologists, allowing for widespread implementation. Prior animal work and a physician preliminary validation study suggest that PeriPath functions effectively for minimally invasive lead implantation procedures.</p>","PeriodicalId":49305,"journal":{"name":"Journal of Medical Devices-Transactions of the Asme","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9445317/pdf/","citationCount":"0","resultStr":"{\"title\":\"Design and Functionality of a Multilumen Thoracic Access Port for Pericardial Access Under Direct Visualization.\",\"authors\":\"Jacqueline M Contento, Paige N Mass, Rohan N Kumthekar, Charles I Berul, Justin D Opfermann\",\"doi\":\"10.1115/1.4054999\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Small vasculature, venous obstruction, or congenital anomalies can preclude transvenous access to the heart, often resulting in open chest surgery to implant cardiac therapy leads for pacing, defibrillation, or cardiac resynchronization. A minimally invasive approach under direct visualization could reduce tissue damage, minimize pain, shorten recovery time, and obviate the need for fluoroscopy. Therefore, PeriPath was designed as a single-use, low-cost pericardial access tool based on clinical requirements. Its mechanical design aids in safe placement of conductive leads to the pericardium using a modified Seldinger technique. The crossed working channels provide an optimal view of the surgical field under direct visualization. Finite element analysis (FEA) confirms that the device is likely not to fail under clinical working conditions. Mechanical testing demonstrates that the tensile strength of its components is sufficient for use, with minimal risk of fracture. The PeriPath procedure is also compatible with common lead implantation tools and can be readily adopted by interventional cardiologists and electrophysiologists, allowing for widespread implementation. Prior animal work and a physician preliminary validation study suggest that PeriPath functions effectively for minimally invasive lead implantation procedures.</p>\",\"PeriodicalId\":49305,\"journal\":{\"name\":\"Journal of Medical Devices-Transactions of the Asme\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9445317/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medical Devices-Transactions of the Asme\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4054999\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/7/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Devices-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4054999","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/7/26 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Design and Functionality of a Multilumen Thoracic Access Port for Pericardial Access Under Direct Visualization.
Small vasculature, venous obstruction, or congenital anomalies can preclude transvenous access to the heart, often resulting in open chest surgery to implant cardiac therapy leads for pacing, defibrillation, or cardiac resynchronization. A minimally invasive approach under direct visualization could reduce tissue damage, minimize pain, shorten recovery time, and obviate the need for fluoroscopy. Therefore, PeriPath was designed as a single-use, low-cost pericardial access tool based on clinical requirements. Its mechanical design aids in safe placement of conductive leads to the pericardium using a modified Seldinger technique. The crossed working channels provide an optimal view of the surgical field under direct visualization. Finite element analysis (FEA) confirms that the device is likely not to fail under clinical working conditions. Mechanical testing demonstrates that the tensile strength of its components is sufficient for use, with minimal risk of fracture. The PeriPath procedure is also compatible with common lead implantation tools and can be readily adopted by interventional cardiologists and electrophysiologists, allowing for widespread implementation. Prior animal work and a physician preliminary validation study suggest that PeriPath functions effectively for minimally invasive lead implantation procedures.
期刊介绍:
The Journal of Medical Devices presents papers on medical devices that improve diagnostic, interventional and therapeutic treatments focusing on applied research and the development of new medical devices or instrumentation. It provides special coverage of novel devices that allow new surgical strategies, new methods of drug delivery, or possible reductions in the complexity, cost, or adverse results of health care. The Design Innovation category features papers focusing on novel devices, including papers with limited clinical or engineering results. The Medical Device News section provides coverage of advances, trends, and events.