Tamir Bendory, Ariel Jaffe, William Leeb, Nir Sharon, Amit Singer
{"title":"超分辨率多参考对齐。","authors":"Tamir Bendory, Ariel Jaffe, William Leeb, Nir Sharon, Amit Singer","doi":"10.1093/imaiai/iaab003","DOIUrl":null,"url":null,"abstract":"<p><p>We study super-resolution multi-reference alignment, the problem of estimating a signal from many circularly shifted, down-sampled and noisy observations. We focus on the low SNR regime, and show that a signal in <math> <mrow><msup><mi>ℝ</mi> <mi>M</mi></msup> </mrow> </math> is uniquely determined when the number <i>L</i> of samples per observation is of the order of the square root of the signal's length ( <math><mrow><mi>L</mi> <mo>=</mo> <mi>O</mi> <mo>(</mo> <msqrt><mi>M</mi></msqrt> <mo>)</mo></mrow> </math> ). Phrased more informally, one can square the resolution. This result holds if the number of observations is proportional to 1/SNR<sup>3</sup>. In contrast, with fewer observations recovery is impossible even when the observations are not down-sampled (<i>L</i> = <i>M</i>). The analysis combines tools from statistical signal processing and invariant theory. We design an expectation-maximization algorithm and demonstrate that it can super-resolve the signal in challenging SNR regimes.</p>","PeriodicalId":45437,"journal":{"name":"Information and Inference-A Journal of the Ima","volume":"11 2","pages":"533-555"},"PeriodicalIF":1.4000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9374099/pdf/nihms-1776575.pdf","citationCount":"0","resultStr":"{\"title\":\"Super-resolution multi-reference alignment.\",\"authors\":\"Tamir Bendory, Ariel Jaffe, William Leeb, Nir Sharon, Amit Singer\",\"doi\":\"10.1093/imaiai/iaab003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We study super-resolution multi-reference alignment, the problem of estimating a signal from many circularly shifted, down-sampled and noisy observations. We focus on the low SNR regime, and show that a signal in <math> <mrow><msup><mi>ℝ</mi> <mi>M</mi></msup> </mrow> </math> is uniquely determined when the number <i>L</i> of samples per observation is of the order of the square root of the signal's length ( <math><mrow><mi>L</mi> <mo>=</mo> <mi>O</mi> <mo>(</mo> <msqrt><mi>M</mi></msqrt> <mo>)</mo></mrow> </math> ). Phrased more informally, one can square the resolution. This result holds if the number of observations is proportional to 1/SNR<sup>3</sup>. In contrast, with fewer observations recovery is impossible even when the observations are not down-sampled (<i>L</i> = <i>M</i>). The analysis combines tools from statistical signal processing and invariant theory. We design an expectation-maximization algorithm and demonstrate that it can super-resolve the signal in challenging SNR regimes.</p>\",\"PeriodicalId\":45437,\"journal\":{\"name\":\"Information and Inference-A Journal of the Ima\",\"volume\":\"11 2\",\"pages\":\"533-555\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9374099/pdf/nihms-1776575.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information and Inference-A Journal of the Ima\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/imaiai/iaab003\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/2/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information and Inference-A Journal of the Ima","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imaiai/iaab003","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/2/18 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
我们研究的是超分辨率多参考对齐,即从许多圆周位移、下采样和噪声观测中估计信号的问题。我们将重点放在低信噪比机制上,并证明当每个观测点的采样数目为信号长度的平方根数量级(L = O ( M ))时,ℝ M 中的信号是唯一确定的。换个非正式的说法,我们可以将分辨率平方化。如果观测数据的数量与 1/SNR3 成正比,则这一结果成立。相反,如果观测值较少,即使观测值没有降低采样(L = M),也不可能恢复。分析结合了统计信号处理和不变理论的工具。我们设计了一种期望最大化算法,并证明它能在具有挑战性的信噪比情况下超级解译信号。
We study super-resolution multi-reference alignment, the problem of estimating a signal from many circularly shifted, down-sampled and noisy observations. We focus on the low SNR regime, and show that a signal in is uniquely determined when the number L of samples per observation is of the order of the square root of the signal's length ( ). Phrased more informally, one can square the resolution. This result holds if the number of observations is proportional to 1/SNR3. In contrast, with fewer observations recovery is impossible even when the observations are not down-sampled (L = M). The analysis combines tools from statistical signal processing and invariant theory. We design an expectation-maximization algorithm and demonstrate that it can super-resolve the signal in challenging SNR regimes.