Hannes Böckmann, Jan Gerrit Horstmann, Abdus Samad Razzaq, Stefan Wippermann, Claus Ropers
{"title":"亚稳电子相的模式选择弹道路径。","authors":"Hannes Böckmann, Jan Gerrit Horstmann, Abdus Samad Razzaq, Stefan Wippermann, Claus Ropers","doi":"10.1063/4.0000162","DOIUrl":null,"url":null,"abstract":"<p><p>Exploiting vibrational excitation for the dynamic control of material properties is an attractive goal with wide-ranging technological potential. Most metal-to-insulator transitions are mediated by few structural modes and are, thus, ideal candidates for selective driving toward a desired electronic phase. Such targeted navigation within a generally multi-dimensional potential energy landscape requires microscopic insight into the non-equilibrium pathway. However, the exact role of coherent inertial motion across the transition state has remained elusive. Here, we demonstrate mode-selective control over the metal-to-insulator phase transition of atomic indium wires on the Si(111) surface, monitored by ultrafast low-energy electron diffraction. We use tailored pulse sequences to individually enhance or suppress key phonon modes and thereby steer the collective atomic motion within the potential energy surface underlying the structural transformation. <i>Ab initio</i> molecular dynamics simulations demonstrate the ballistic character of the structural transition along the deformation vectors of the Peierls amplitude modes. Our work illustrates that coherent excitation of collective modes via exciton-phonon interactions evades entropic barriers and enables the dynamic control of materials functionality.</p>","PeriodicalId":48683,"journal":{"name":"Structural Dynamics-Us","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2022-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9385219/pdf/","citationCount":"0","resultStr":"{\"title\":\"Mode-selective ballistic pathway to a metastable electronic phase.\",\"authors\":\"Hannes Böckmann, Jan Gerrit Horstmann, Abdus Samad Razzaq, Stefan Wippermann, Claus Ropers\",\"doi\":\"10.1063/4.0000162\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Exploiting vibrational excitation for the dynamic control of material properties is an attractive goal with wide-ranging technological potential. Most metal-to-insulator transitions are mediated by few structural modes and are, thus, ideal candidates for selective driving toward a desired electronic phase. Such targeted navigation within a generally multi-dimensional potential energy landscape requires microscopic insight into the non-equilibrium pathway. However, the exact role of coherent inertial motion across the transition state has remained elusive. Here, we demonstrate mode-selective control over the metal-to-insulator phase transition of atomic indium wires on the Si(111) surface, monitored by ultrafast low-energy electron diffraction. We use tailored pulse sequences to individually enhance or suppress key phonon modes and thereby steer the collective atomic motion within the potential energy surface underlying the structural transformation. <i>Ab initio</i> molecular dynamics simulations demonstrate the ballistic character of the structural transition along the deformation vectors of the Peierls amplitude modes. Our work illustrates that coherent excitation of collective modes via exciton-phonon interactions evades entropic barriers and enables the dynamic control of materials functionality.</p>\",\"PeriodicalId\":48683,\"journal\":{\"name\":\"Structural Dynamics-Us\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2022-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9385219/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Dynamics-Us\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/4.0000162\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/7/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Dynamics-Us","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/4.0000162","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/7/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Mode-selective ballistic pathway to a metastable electronic phase.
Exploiting vibrational excitation for the dynamic control of material properties is an attractive goal with wide-ranging technological potential. Most metal-to-insulator transitions are mediated by few structural modes and are, thus, ideal candidates for selective driving toward a desired electronic phase. Such targeted navigation within a generally multi-dimensional potential energy landscape requires microscopic insight into the non-equilibrium pathway. However, the exact role of coherent inertial motion across the transition state has remained elusive. Here, we demonstrate mode-selective control over the metal-to-insulator phase transition of atomic indium wires on the Si(111) surface, monitored by ultrafast low-energy electron diffraction. We use tailored pulse sequences to individually enhance or suppress key phonon modes and thereby steer the collective atomic motion within the potential energy surface underlying the structural transformation. Ab initio molecular dynamics simulations demonstrate the ballistic character of the structural transition along the deformation vectors of the Peierls amplitude modes. Our work illustrates that coherent excitation of collective modes via exciton-phonon interactions evades entropic barriers and enables the dynamic control of materials functionality.
Structural Dynamics-UsCHEMISTRY, PHYSICALPHYSICS, ATOMIC, MOLECU-PHYSICS, ATOMIC, MOLECULAR & CHEMICAL
CiteScore
5.50
自引率
3.60%
发文量
24
审稿时长
16 weeks
期刊介绍:
Structural Dynamics focuses on the recent developments in experimental and theoretical methods and techniques that allow a visualization of the electronic and geometric structural changes in real time of chemical, biological, and condensed-matter systems. The community of scientists and engineers working on structural dynamics in such diverse systems often use similar instrumentation and methods.
The journal welcomes articles dealing with fundamental problems of electronic and structural dynamics that are tackled by new methods, such as:
Time-resolved X-ray and electron diffraction and scattering,
Coherent diffractive imaging,
Time-resolved X-ray spectroscopies (absorption, emission, resonant inelastic scattering, etc.),
Time-resolved electron energy loss spectroscopy (EELS) and electron microscopy,
Time-resolved photoelectron spectroscopies (UPS, XPS, ARPES, etc.),
Multidimensional spectroscopies in the infrared, the visible and the ultraviolet,
Nonlinear spectroscopies in the VUV, the soft and the hard X-ray domains,
Theory and computational methods and algorithms for the analysis and description of structuraldynamics and their associated experimental signals.
These new methods are enabled by new instrumentation, such as:
X-ray free electron lasers, which provide flux, coherence, and time resolution,
New sources of ultrashort electron pulses,
New sources of ultrashort vacuum ultraviolet (VUV) to hard X-ray pulses, such as high-harmonic generation (HHG) sources or plasma-based sources,
New sources of ultrashort infrared and terahertz (THz) radiation,
New detectors for X-rays and electrons,
New sample handling and delivery schemes,
New computational capabilities.