量子化学量子学习机的开源变分量子本征求解器扩展

IF 16.8 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Wiley Interdisciplinary Reviews: Computational Molecular Science Pub Date : 2023-03-15 DOI:10.1002/wcms.1664
Mohammad Haidar, Marko J. Ran?i?, Thomas Ayral, Yvon Maday, Jean-Philip Piquemal
{"title":"量子化学量子学习机的开源变分量子本征求解器扩展","authors":"Mohammad Haidar,&nbsp;Marko J. Ran?i?,&nbsp;Thomas Ayral,&nbsp;Yvon Maday,&nbsp;Jean-Philip Piquemal","doi":"10.1002/wcms.1664","DOIUrl":null,"url":null,"abstract":"<p>Quantum chemistry (QC) is one of the most promising applications of quantum computing. However, present quantum processing units (QPUs) are still subject to large errors. Therefore, noisy intermediate-scale quantum (NISQ) hardware is limited in terms of qubit counts/circuit depths. Variational quantum eigensolver (VQE) algorithms can potentially overcome such issues. Here, we introduce the OpenVQE open-source QC package. It provides tools for using and developing chemically-inspired adaptive methods derived from unitary coupled cluster (UCC). It facilitates the development and testing of VQE algorithms and is able to use the Atos Quantum Learning Machine (QLM), a general quantum programming framework enabling to write/optimize/simulate quantum computing programs. We present a specific, freely available QLM open-source module, myQLM-fermion. We review its key tools for facilitating QC computations (fermionic second quantization, fermion-spin transforms, etc.). OpenVQE largely extends the QLM's QC capabilities by providing: (i) the functions to generate the different types of excitations beyond the commonly used UCCSD ansatz; (ii) a new Python implementation of the “adaptive derivative assembled pseudo-Trotter method” (ADAPT-VQE). Interoperability with other major quantum programming frameworks is ensured thanks to the myQLM-interop package, which allows users to build their own code and easily execute it on existing QPUs. The combined OpenVQE/myQLM-fermion libraries facilitate the implementation, testing and development of variational quantum algorithms, while offering access to large molecules as the noiseless Schrödinger-style dense simulator can reach up to 41 qubits for any circuit. Extensive benchmarks are provided for molecules associated to qubit counts ranging from 4 to 24. We focus on reaching chemical accuracy, reducing the number of circuit gates and optimizing parameters and operators between “fixed-length” UCC and ADAPT-VQE ansätze.</p><p>This article is categorized under:\n </p>","PeriodicalId":236,"journal":{"name":"Wiley Interdisciplinary Reviews: Computational Molecular Science","volume":"13 5","pages":""},"PeriodicalIF":16.8000,"publicationDate":"2023-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/wcms.1664","citationCount":"6","resultStr":"{\"title\":\"Open source variational quantum eigensolver extension of the quantum learning machine for quantum chemistry\",\"authors\":\"Mohammad Haidar,&nbsp;Marko J. Ran?i?,&nbsp;Thomas Ayral,&nbsp;Yvon Maday,&nbsp;Jean-Philip Piquemal\",\"doi\":\"10.1002/wcms.1664\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Quantum chemistry (QC) is one of the most promising applications of quantum computing. However, present quantum processing units (QPUs) are still subject to large errors. Therefore, noisy intermediate-scale quantum (NISQ) hardware is limited in terms of qubit counts/circuit depths. Variational quantum eigensolver (VQE) algorithms can potentially overcome such issues. Here, we introduce the OpenVQE open-source QC package. It provides tools for using and developing chemically-inspired adaptive methods derived from unitary coupled cluster (UCC). It facilitates the development and testing of VQE algorithms and is able to use the Atos Quantum Learning Machine (QLM), a general quantum programming framework enabling to write/optimize/simulate quantum computing programs. We present a specific, freely available QLM open-source module, myQLM-fermion. We review its key tools for facilitating QC computations (fermionic second quantization, fermion-spin transforms, etc.). OpenVQE largely extends the QLM's QC capabilities by providing: (i) the functions to generate the different types of excitations beyond the commonly used UCCSD ansatz; (ii) a new Python implementation of the “adaptive derivative assembled pseudo-Trotter method” (ADAPT-VQE). Interoperability with other major quantum programming frameworks is ensured thanks to the myQLM-interop package, which allows users to build their own code and easily execute it on existing QPUs. The combined OpenVQE/myQLM-fermion libraries facilitate the implementation, testing and development of variational quantum algorithms, while offering access to large molecules as the noiseless Schrödinger-style dense simulator can reach up to 41 qubits for any circuit. Extensive benchmarks are provided for molecules associated to qubit counts ranging from 4 to 24. We focus on reaching chemical accuracy, reducing the number of circuit gates and optimizing parameters and operators between “fixed-length” UCC and ADAPT-VQE ansätze.</p><p>This article is categorized under:\\n </p>\",\"PeriodicalId\":236,\"journal\":{\"name\":\"Wiley Interdisciplinary Reviews: Computational Molecular Science\",\"volume\":\"13 5\",\"pages\":\"\"},\"PeriodicalIF\":16.8000,\"publicationDate\":\"2023-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/wcms.1664\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wiley Interdisciplinary Reviews: Computational Molecular Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/wcms.1664\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews: Computational Molecular Science","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/wcms.1664","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 6

摘要

量子化学(QC)是量子计算最有前途的应用之一。然而,目前的量子处理单元(QPU)仍然存在较大的误差。因此,噪声中等规模量子(NISQ)硬件在量子位计数/电路深度方面受到限制。变分量子本征求解器(VQE)算法可以潜在地克服这些问题。在这里,我们介绍OpenVQE开源QC包。它为使用和开发从酉耦合簇(UCC)衍生的化学启发自适应方法提供了工具。它促进了VQE算法的开发和测试,并能够使用Atos量子学习机(QLM),这是一种通用的量子编程框架,能够编写/优化/模拟量子计算程序。我们提供了一个特定的,免费提供的QLM开源模块,myQLM费米子。我们回顾了其促进QC计算的关键工具(费米子二次量化、费米子自旋变换等)。OpenVQE通过提供以下功能,在很大程度上扩展了QLM的QC功能:(i)生成常用UCCSD模拟之外的不同类型激发的功能;(ii)“自适应导数组装伪Trotter方法”(ADAPT-VQE)的新Python实现。myQLM interop包确保了与其他主要量子编程框架的互操作性,它允许用户构建自己的代码,并在现有的QPU上轻松执行。组合的OpenVQE/myQLM费米子库促进了变分量子算法的实现、测试和开发,同时提供了对大分子的访问,因为无噪声薛定谔式密集模拟器可以达到任何电路的41个量子位。为与4至24个量子位计数相关的分子提供了广泛的基准。我们专注于达到化学精度,减少电路门的数量,优化“固定长度”UCC和ADAPT-VQE ansätze之间的参数和运算符。本文分类如下:
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Open source variational quantum eigensolver extension of the quantum learning machine for quantum chemistry

Quantum chemistry (QC) is one of the most promising applications of quantum computing. However, present quantum processing units (QPUs) are still subject to large errors. Therefore, noisy intermediate-scale quantum (NISQ) hardware is limited in terms of qubit counts/circuit depths. Variational quantum eigensolver (VQE) algorithms can potentially overcome such issues. Here, we introduce the OpenVQE open-source QC package. It provides tools for using and developing chemically-inspired adaptive methods derived from unitary coupled cluster (UCC). It facilitates the development and testing of VQE algorithms and is able to use the Atos Quantum Learning Machine (QLM), a general quantum programming framework enabling to write/optimize/simulate quantum computing programs. We present a specific, freely available QLM open-source module, myQLM-fermion. We review its key tools for facilitating QC computations (fermionic second quantization, fermion-spin transforms, etc.). OpenVQE largely extends the QLM's QC capabilities by providing: (i) the functions to generate the different types of excitations beyond the commonly used UCCSD ansatz; (ii) a new Python implementation of the “adaptive derivative assembled pseudo-Trotter method” (ADAPT-VQE). Interoperability with other major quantum programming frameworks is ensured thanks to the myQLM-interop package, which allows users to build their own code and easily execute it on existing QPUs. The combined OpenVQE/myQLM-fermion libraries facilitate the implementation, testing and development of variational quantum algorithms, while offering access to large molecules as the noiseless Schrödinger-style dense simulator can reach up to 41 qubits for any circuit. Extensive benchmarks are provided for molecules associated to qubit counts ranging from 4 to 24. We focus on reaching chemical accuracy, reducing the number of circuit gates and optimizing parameters and operators between “fixed-length” UCC and ADAPT-VQE ansätze.

This article is categorized under:

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Wiley Interdisciplinary Reviews: Computational Molecular Science
Wiley Interdisciplinary Reviews: Computational Molecular Science CHEMISTRY, MULTIDISCIPLINARY-MATHEMATICAL & COMPUTATIONAL BIOLOGY
CiteScore
28.90
自引率
1.80%
发文量
52
审稿时长
6-12 weeks
期刊介绍: Computational molecular sciences harness the power of rigorous chemical and physical theories, employing computer-based modeling, specialized hardware, software development, algorithm design, and database management to explore and illuminate every facet of molecular sciences. These interdisciplinary approaches form a bridge between chemistry, biology, and materials sciences, establishing connections with adjacent application-driven fields in both chemistry and biology. WIREs Computational Molecular Science stands as a platform to comprehensively review and spotlight research from these dynamic and interconnected fields.
期刊最新文献
Nonequilibrium Dynamics at Cellular Interfaces: Insights From Simulation and Theory Unveiling Drug Discovery Insights Through Molecular Electrostatic Potential Analysis Issue Information Embedded Many-Body Green's Function Methods for Electronic Excitations in Complex Molecular Systems ROBERT: Bridging the Gap Between Machine Learning and Chemistry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1