碳酸钠溶液双极电渗析生产氢氧化钠的研究

IF 2 Q4 CHEMISTRY, PHYSICAL Membranes and Membrane Technologies Pub Date : 2023-10-01 DOI:10.1134/S2517751623050050
E. N. Nosova, D. M. Musatova, S. S. Melnikov, V. I. Zabolotsky
{"title":"碳酸钠溶液双极电渗析生产氢氧化钠的研究","authors":"E. N. Nosova,&nbsp;D. M. Musatova,&nbsp;S. S. Melnikov,&nbsp;V. I. Zabolotsky","doi":"10.1134/S2517751623050050","DOIUrl":null,"url":null,"abstract":"<p>In this work, the production of sodium hydroxide by the method of bipolar electrodialysis from a solution of sodium carbonate using bipolar membranes MB-3 has been studied. For research, a laboratory electrodialyzer-synthesizer with a three-chamber unit cell has been used. The membrane package of the electrodialyzer has contained five elementary cells, the active area of each membrane being 1 dm<sup>2</sup>. To compare the obtained mass transfer characteristics, the process of preparation of sodium hydroxide from sodium sulfate has been additionally studied. It has been shown that the use of sodium carbonate as the initial solution makes it possible to increase the concentration of the resulting alkali from 0.92 to 1.7 M under comparable process conditions compared to the preparation of sodium hydroxide from a sodium sulfate solution. When sodium carbonate is used, the alkali current efficiency is more than 70% in all experiments, while when alkali is obtained from a sodium sulfate solution, the current efficiency drops sharply to 0.4–0.5% when the concentration exceeds 0.8 M NaOH. The energy consumption for the transfer of one kg of alkali is in the range of 2.8–13.9 kWh/kg at operating current densities of 1–3 A/dm<sup>2</sup>.</p>","PeriodicalId":700,"journal":{"name":"Membranes and Membrane Technologies","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study of the Production of Sodium Hydroxide by Bipolar Electrodialysis from Sodium Carbonate Solution\",\"authors\":\"E. N. Nosova,&nbsp;D. M. Musatova,&nbsp;S. S. Melnikov,&nbsp;V. I. Zabolotsky\",\"doi\":\"10.1134/S2517751623050050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this work, the production of sodium hydroxide by the method of bipolar electrodialysis from a solution of sodium carbonate using bipolar membranes MB-3 has been studied. For research, a laboratory electrodialyzer-synthesizer with a three-chamber unit cell has been used. The membrane package of the electrodialyzer has contained five elementary cells, the active area of each membrane being 1 dm<sup>2</sup>. To compare the obtained mass transfer characteristics, the process of preparation of sodium hydroxide from sodium sulfate has been additionally studied. It has been shown that the use of sodium carbonate as the initial solution makes it possible to increase the concentration of the resulting alkali from 0.92 to 1.7 M under comparable process conditions compared to the preparation of sodium hydroxide from a sodium sulfate solution. When sodium carbonate is used, the alkali current efficiency is more than 70% in all experiments, while when alkali is obtained from a sodium sulfate solution, the current efficiency drops sharply to 0.4–0.5% when the concentration exceeds 0.8 M NaOH. The energy consumption for the transfer of one kg of alkali is in the range of 2.8–13.9 kWh/kg at operating current densities of 1–3 A/dm<sup>2</sup>.</p>\",\"PeriodicalId\":700,\"journal\":{\"name\":\"Membranes and Membrane Technologies\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Membranes and Membrane Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S2517751623050050\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Membranes and Membrane Technologies","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S2517751623050050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了用MB-3双极膜从碳酸钠溶液中用双极电渗析法生产氢氧化钠的方法。为了进行研究,使用了一种带有三室单元电池的实验室电渗析器合成器。电渗析器的膜组件包含五个基本单元,每个膜的有效面积为1dm2。为了比较所获得的传质特性,还研究了由硫酸钠制备氢氧化钠的工艺。已经表明,与从硫酸钠溶液制备氢氧化钠相比,使用碳酸钠作为初始溶液可以在类似的工艺条件下将所得碱的浓度从0.92M增加到1.7M。当使用碳酸钠时,在所有实验中,碱电流效率都超过70%,而当从硫酸钠溶液中获得碱时,当浓度超过0.8 M NaOH时,电流效率急剧下降至0.4–0.5%。在1–3 A/dm2的工作电流密度下,一公斤碱的转移能耗在2.8–13.9 kWh/kg范围内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Study of the Production of Sodium Hydroxide by Bipolar Electrodialysis from Sodium Carbonate Solution

In this work, the production of sodium hydroxide by the method of bipolar electrodialysis from a solution of sodium carbonate using bipolar membranes MB-3 has been studied. For research, a laboratory electrodialyzer-synthesizer with a three-chamber unit cell has been used. The membrane package of the electrodialyzer has contained five elementary cells, the active area of each membrane being 1 dm2. To compare the obtained mass transfer characteristics, the process of preparation of sodium hydroxide from sodium sulfate has been additionally studied. It has been shown that the use of sodium carbonate as the initial solution makes it possible to increase the concentration of the resulting alkali from 0.92 to 1.7 M under comparable process conditions compared to the preparation of sodium hydroxide from a sodium sulfate solution. When sodium carbonate is used, the alkali current efficiency is more than 70% in all experiments, while when alkali is obtained from a sodium sulfate solution, the current efficiency drops sharply to 0.4–0.5% when the concentration exceeds 0.8 M NaOH. The energy consumption for the transfer of one kg of alkali is in the range of 2.8–13.9 kWh/kg at operating current densities of 1–3 A/dm2.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
31.20%
发文量
38
期刊介绍: The journal Membranes and Membrane Technologies publishes original research articles and reviews devoted to scientific research and technological advancements in the field of membranes and membrane technologies, including the following main topics:novel membrane materials and creation of highly efficient polymeric and inorganic membranes;hybrid membranes, nanocomposites, and nanostructured membranes;aqueous and nonaqueous filtration processes (micro-, ultra-, and nanofiltration; reverse osmosis);gas separation;electromembrane processes and fuel cells;membrane pervaporation and membrane distillation;membrane catalysis and membrane reactors;water desalination and wastewater treatment;hybrid membrane processes;membrane sensors;membrane extraction and membrane emulsification;mathematical simulation of porous structures and membrane separation processes;membrane characterization;membrane technologies in industry (energy, mineral extraction, pharmaceutics and medicine, chemistry and petroleum chemistry, food industry, and others);membranes and protection of environment (“green chemistry”).The journal has been published in Russian already for several years, English translations of the content used to be integrated in the journal Petroleum Chemistry. This journal is a split off with additional topics.
期刊最新文献
Transport and Structural Characteristics of Heterogeneous Ion-Exchange Membranes with Varied Dispersity of the Ion Exchanger Poly(urethane-imides) and Poly(ester-imides) as Promising Materials for Gas Separation and Pervaporation Membranes Crosslinking of Brominated Poly(1-trimethylsilyl-1-propyne) Using Polyethylenimine as a Crosslinking Agent Effect of Surface Modification with Cerium Oxide on the Transport Properties of Heterogeneous Anion Exchange Membranes MA-41 Ceramic Substrates for Filtration Membranes Based on Fine Fly Ash Microspheres
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1