一种新的含有香豆素缩氨基脲杂化配体的钯络合物抑制了克氏锥虫从宿主细胞中的释放,并降低了体内寄生虫病。

IF 2.7 3区 化学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY JBIC Journal of Biological Inorganic Chemistry Pub Date : 2023-09-28 DOI:10.1007/s00775-023-02020-2
Santiago Rostán, Samuel Porto, Cesar L. N. Barbosa, Diego Assis, Natalia Alvarez, Fabiana Simão Machado, Graciela Mahler, Lucía Otero
{"title":"一种新的含有香豆素缩氨基脲杂化配体的钯络合物抑制了克氏锥虫从宿主细胞中的释放,并降低了体内寄生虫病。","authors":"Santiago Rostán,&nbsp;Samuel Porto,&nbsp;Cesar L. N. Barbosa,&nbsp;Diego Assis,&nbsp;Natalia Alvarez,&nbsp;Fabiana Simão Machado,&nbsp;Graciela Mahler,&nbsp;Lucía Otero","doi":"10.1007/s00775-023-02020-2","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, two analogous coumarin-thio and semicarbazone hybrid compounds were prepared and evaluated as a potential antichagasic agents. Furthermore, palladium and platinum complexes with the thiosemicarbazone derivative as ligand (L1) were obtained in order to establish the effect of metal complexation on the antiparasitic activity. All compounds were fully characterized both in solution and in solid state including the resolution of the crystal structure of the palladium complex by X-ray diffraction methods. Unexpectedly, all experimental and theoretical characterizations in the solid state, demonstrated that the obtained palladium and platinum complexes are structurally different: [PdCl(L1)] and [PtCl<sub>2</sub>(HL1)]. All the studied compounds lower the proliferation of the amastigote form of <i>Trypanosoma cruzi</i> while some of them also have an effect on the trypomastigote stage. Additionally, the compounds inhibit <i>T. cruzi</i> release from host cells in variable extents. The Pd compound presented a remarkable profile in all the in vitro experiments, and it showed no toxicity for mammalian cells in the assayed concentrations. In this sense, in vivo experiments were performed for this compound using an acute model of Chagas disease. Results showed that the complex significantly lowered the parasite count in the mice blood with no significant toxicity.</p><h3>Graphical abstract</h3> <div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":603,"journal":{"name":"JBIC Journal of Biological Inorganic Chemistry","volume":"28 8","pages":"711 - 723"},"PeriodicalIF":2.7000,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel palladium complex with a coumarin-thiosemicarbazone hybrid ligand inhibits Trypanosoma cruzi release from host cells and lowers the parasitemia in vivo\",\"authors\":\"Santiago Rostán,&nbsp;Samuel Porto,&nbsp;Cesar L. N. Barbosa,&nbsp;Diego Assis,&nbsp;Natalia Alvarez,&nbsp;Fabiana Simão Machado,&nbsp;Graciela Mahler,&nbsp;Lucía Otero\",\"doi\":\"10.1007/s00775-023-02020-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this work, two analogous coumarin-thio and semicarbazone hybrid compounds were prepared and evaluated as a potential antichagasic agents. Furthermore, palladium and platinum complexes with the thiosemicarbazone derivative as ligand (L1) were obtained in order to establish the effect of metal complexation on the antiparasitic activity. All compounds were fully characterized both in solution and in solid state including the resolution of the crystal structure of the palladium complex by X-ray diffraction methods. Unexpectedly, all experimental and theoretical characterizations in the solid state, demonstrated that the obtained palladium and platinum complexes are structurally different: [PdCl(L1)] and [PtCl<sub>2</sub>(HL1)]. All the studied compounds lower the proliferation of the amastigote form of <i>Trypanosoma cruzi</i> while some of them also have an effect on the trypomastigote stage. Additionally, the compounds inhibit <i>T. cruzi</i> release from host cells in variable extents. The Pd compound presented a remarkable profile in all the in vitro experiments, and it showed no toxicity for mammalian cells in the assayed concentrations. In this sense, in vivo experiments were performed for this compound using an acute model of Chagas disease. Results showed that the complex significantly lowered the parasite count in the mice blood with no significant toxicity.</p><h3>Graphical abstract</h3> <div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":603,\"journal\":{\"name\":\"JBIC Journal of Biological Inorganic Chemistry\",\"volume\":\"28 8\",\"pages\":\"711 - 723\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JBIC Journal of Biological Inorganic Chemistry\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00775-023-02020-2\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JBIC Journal of Biological Inorganic Chemistry","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.1007/s00775-023-02020-2","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在本工作中,制备了两种类似的香豆素-硫代和氨基脲杂化化合物,并对其作为潜在的抗癌剂进行了评价。此外,获得了以氨基硫脲衍生物为配体(L1)的钯和铂络合物,以确定金属络合对抗寄生虫活性的影响。所有化合物在溶液和固态下都得到了充分的表征,包括通过X射线衍射方法对钯络合物的晶体结构的分辨率。出乎意料的是,固态下的所有实验和理论表征都表明,获得的钯和铂络合物在结构上不同:[PdCl(L1)]和[PtCl2(HL1)]。所有研究的化合物都降低了克鲁兹锥虫无鞭毛虫形式的增殖,而其中一些化合物也对锥虫期有影响。此外,这些化合物在不同程度上抑制克氏锥虫从宿主细胞中释放。Pd化合物在所有体外实验中都表现出显著的特征,并且在所测定的浓度下对哺乳动物细胞没有毒性。从这个意义上讲,使用恰加斯病的急性模型对该化合物进行了体内实验。结果表明,该复合物显著降低了小鼠血液中的寄生虫计数,没有显著毒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A novel palladium complex with a coumarin-thiosemicarbazone hybrid ligand inhibits Trypanosoma cruzi release from host cells and lowers the parasitemia in vivo

In this work, two analogous coumarin-thio and semicarbazone hybrid compounds were prepared and evaluated as a potential antichagasic agents. Furthermore, palladium and platinum complexes with the thiosemicarbazone derivative as ligand (L1) were obtained in order to establish the effect of metal complexation on the antiparasitic activity. All compounds were fully characterized both in solution and in solid state including the resolution of the crystal structure of the palladium complex by X-ray diffraction methods. Unexpectedly, all experimental and theoretical characterizations in the solid state, demonstrated that the obtained palladium and platinum complexes are structurally different: [PdCl(L1)] and [PtCl2(HL1)]. All the studied compounds lower the proliferation of the amastigote form of Trypanosoma cruzi while some of them also have an effect on the trypomastigote stage. Additionally, the compounds inhibit T. cruzi release from host cells in variable extents. The Pd compound presented a remarkable profile in all the in vitro experiments, and it showed no toxicity for mammalian cells in the assayed concentrations. In this sense, in vivo experiments were performed for this compound using an acute model of Chagas disease. Results showed that the complex significantly lowered the parasite count in the mice blood with no significant toxicity.

Graphical abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
JBIC Journal of Biological Inorganic Chemistry
JBIC Journal of Biological Inorganic Chemistry 化学-生化与分子生物学
CiteScore
5.90
自引率
3.30%
发文量
49
审稿时长
3 months
期刊介绍: Biological inorganic chemistry is a growing field of science that embraces the principles of biology and inorganic chemistry and impacts other fields ranging from medicine to the environment. JBIC (Journal of Biological Inorganic Chemistry) seeks to promote this field internationally. The Journal is primarily concerned with advances in understanding the role of metal ions within a biological matrix—be it a protein, DNA/RNA, or a cell, as well as appropriate model studies. Manuscripts describing high-quality original research on the above topics in English are invited for submission to this Journal. The Journal publishes original articles, minireviews, and commentaries on debated issues.
期刊最新文献
Ascorbate: a forgotten component in the cytotoxicity of Cu(II) ATCUN peptide complexes. Correction: Quantitative proteomic analysis reveals Ga(III) polypyridyl catecholate complexes disrupt Aspergillus fumigatus mitochondrial function. Electron transfer in biological systems. Rapid method for screening of both calcium and magnesium chelation with comparison of 21 known metal chelators. Development and validation of an ICP-MS method and its application in assessing heavy metals in whole blood samples among occupationally exposed lead smelting plant workers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1