{"title":"填料类型对复合树脂修复体磨损和表面硬度的影响。","authors":"Fei Chen, Lijuan Sun, Hao Luo, Peng Yu, Jiang Lin","doi":"10.1177/22808000231193524","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Wear and surface hardness of resin composites are of relevance from the clinical standpoint. With the incorporation of novel filler system, more studies need to be performed to investigate newly marketed resin composites. The objective of this study was to investigate the abrasive wear and surface hardness of dental restorative with different filler types.</p><p><strong>Methods: </strong>Nanohybrid filled Harmonize (HM) and Tetric N-Ceram (TNC), microhybrid filled Filtek Z250 (Z250), nanofilled Filtek Z350 (Z350) were included in the study. Twelve cylindrical resin composites specimens with 10 mm in diameter and 6 mm in thickness were prepared for abrasive wear test. Eight hundred cycles under 17 kg load were conducted for final wear by CW3-1 wear machine. The specimen was cleaned with an ultrasonic unit for 3 min followed with drying procedure. After measurement of weight loss and the density of specimens, the specimens were kept for measurement of surface hardness. Surface hardness was measured using a micro-hardness tester with a Vickers diamond indenter after polishing. Three specimens of each material were observed by scanning electron microscopy (SEM) after the abrasion to evaluate the morphology of the surface. Data were analyzed using one-way analysis of variance (ANOVA), followed by Tukey HSD test (<i>α</i> = .05).</p><p><strong>Results: </strong>Z250 performed the least volume wear loss (41.1 ± 2.1 mm<sup>3</sup>), as well as the hardest value (102.7 ± 2.9 HV). There was no significant difference with the volume wear loss (<i>p</i> = 1.000) and surface hardness (<i>p</i> = 0.874) of HM and TNC. SEM images of nanohybrid filled HM and TNC represented smoother surface compared with other types of resin composites.</p><p><strong>Conclusions: </strong>Microhybrid Z250 showed the highest wear resistance and surface hardness, nanofilled and nanohybrid resin composites may still face the insufficient of wear and surface hardness quality.</p>","PeriodicalId":14985,"journal":{"name":"Journal of Applied Biomaterials & Functional Materials","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of filler types on wear and surface hardness of composite resin restorations.\",\"authors\":\"Fei Chen, Lijuan Sun, Hao Luo, Peng Yu, Jiang Lin\",\"doi\":\"10.1177/22808000231193524\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>Wear and surface hardness of resin composites are of relevance from the clinical standpoint. With the incorporation of novel filler system, more studies need to be performed to investigate newly marketed resin composites. The objective of this study was to investigate the abrasive wear and surface hardness of dental restorative with different filler types.</p><p><strong>Methods: </strong>Nanohybrid filled Harmonize (HM) and Tetric N-Ceram (TNC), microhybrid filled Filtek Z250 (Z250), nanofilled Filtek Z350 (Z350) were included in the study. Twelve cylindrical resin composites specimens with 10 mm in diameter and 6 mm in thickness were prepared for abrasive wear test. Eight hundred cycles under 17 kg load were conducted for final wear by CW3-1 wear machine. The specimen was cleaned with an ultrasonic unit for 3 min followed with drying procedure. After measurement of weight loss and the density of specimens, the specimens were kept for measurement of surface hardness. Surface hardness was measured using a micro-hardness tester with a Vickers diamond indenter after polishing. Three specimens of each material were observed by scanning electron microscopy (SEM) after the abrasion to evaluate the morphology of the surface. Data were analyzed using one-way analysis of variance (ANOVA), followed by Tukey HSD test (<i>α</i> = .05).</p><p><strong>Results: </strong>Z250 performed the least volume wear loss (41.1 ± 2.1 mm<sup>3</sup>), as well as the hardest value (102.7 ± 2.9 HV). There was no significant difference with the volume wear loss (<i>p</i> = 1.000) and surface hardness (<i>p</i> = 0.874) of HM and TNC. SEM images of nanohybrid filled HM and TNC represented smoother surface compared with other types of resin composites.</p><p><strong>Conclusions: </strong>Microhybrid Z250 showed the highest wear resistance and surface hardness, nanofilled and nanohybrid resin composites may still face the insufficient of wear and surface hardness quality.</p>\",\"PeriodicalId\":14985,\"journal\":{\"name\":\"Journal of Applied Biomaterials & Functional Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Biomaterials & Functional Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/22808000231193524\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Biomaterials & Functional Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/22808000231193524","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Influence of filler types on wear and surface hardness of composite resin restorations.
Objective: Wear and surface hardness of resin composites are of relevance from the clinical standpoint. With the incorporation of novel filler system, more studies need to be performed to investigate newly marketed resin composites. The objective of this study was to investigate the abrasive wear and surface hardness of dental restorative with different filler types.
Methods: Nanohybrid filled Harmonize (HM) and Tetric N-Ceram (TNC), microhybrid filled Filtek Z250 (Z250), nanofilled Filtek Z350 (Z350) were included in the study. Twelve cylindrical resin composites specimens with 10 mm in diameter and 6 mm in thickness were prepared for abrasive wear test. Eight hundred cycles under 17 kg load were conducted for final wear by CW3-1 wear machine. The specimen was cleaned with an ultrasonic unit for 3 min followed with drying procedure. After measurement of weight loss and the density of specimens, the specimens were kept for measurement of surface hardness. Surface hardness was measured using a micro-hardness tester with a Vickers diamond indenter after polishing. Three specimens of each material were observed by scanning electron microscopy (SEM) after the abrasion to evaluate the morphology of the surface. Data were analyzed using one-way analysis of variance (ANOVA), followed by Tukey HSD test (α = .05).
Results: Z250 performed the least volume wear loss (41.1 ± 2.1 mm3), as well as the hardest value (102.7 ± 2.9 HV). There was no significant difference with the volume wear loss (p = 1.000) and surface hardness (p = 0.874) of HM and TNC. SEM images of nanohybrid filled HM and TNC represented smoother surface compared with other types of resin composites.
Conclusions: Microhybrid Z250 showed the highest wear resistance and surface hardness, nanofilled and nanohybrid resin composites may still face the insufficient of wear and surface hardness quality.
期刊介绍:
The Journal of Applied Biomaterials & Functional Materials (JABFM) is an open access, peer-reviewed, international journal considering the publication of original contributions, reviews and editorials dealing with clinical and laboratory investigations in the fast growing field of biomaterial sciences and functional materials.
The areas covered by the journal will include:
• Biomaterials / Materials for biomedical applications
• Functional materials
• Hybrid and composite materials
• Soft materials
• Hydrogels
• Nanomaterials
• Gene delivery
• Nonodevices
• Metamaterials
• Active coatings
• Surface functionalization
• Tissue engineering
• Cell delivery/cell encapsulation systems
• 3D printing materials
• Material characterization
• Biomechanics