Yan Chen , Weigang Wang , Junling Li , Li Zhou , Bo Shi , Cici Fan , Ke Wang , Hao Zhang , Hong Li , Maofa Ge
{"title":"氯与几种单甲基支链烷烃反应的动力学和机理","authors":"Yan Chen , Weigang Wang , Junling Li , Li Zhou , Bo Shi , Cici Fan , Ke Wang , Hao Zhang , Hong Li , Maofa Ge","doi":"10.1016/j.jes.2022.08.010","DOIUrl":null,"url":null,"abstract":"<div><p>Branched alkanes are ubiquitous in the troposphere and play an important role in the chemical processes. In this work, the rate constants and products for the reaction of Cl atoms with 3-methylhexane and 2-methylheptane were measured at room temperature (298 ± 0.2 K) and atmospheric pressure using a conventional relative rate method. The rate constants of 3-methylhexane and 2-methylheptane in units of cm<sup>3</sup>/(mol·sec) are (3.09 ± 0.31) × 10<sup>−10</sup> and (3.67 ± 0.40) × 10<sup>−10</sup>, respectively. Furthermore, the corresponding atmospheric lifetime of the studied branched alkanes with Cl was 6.92-89.90 hours and 5.82-75.69 hours, respectively. The estimated atmospheric lifetimes indicated that the reaction with Cl atoms could be the most important atmospheric degradation pathway for 3-methylhexane and 2-methylheptane. Primary gas-phase products of the reactions were identified and quantified, and particle-phase products were also obtained. The atmosphere oxidation mechanism of Cl atoms with 3-methylhexane and 2-methylheptane is proposed. The SOA yields of 3-methylhexane and 2-methylheptane from the reaction of Cl atoms were determined to be 7.96% ± 0.89% and 13.35% ± 1.50% respectively. Overall, the results reveal that the primary loss process of branched alkanes is the reaction with Cl atoms, which impacts its degradation on a regional scale.</p></div>","PeriodicalId":15774,"journal":{"name":"Journal of environmental sciences","volume":null,"pages":null},"PeriodicalIF":6.9000,"publicationDate":"2022-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kinetic and mechanism of the reaction between Cl and several mono-methyl branched alkanes\",\"authors\":\"Yan Chen , Weigang Wang , Junling Li , Li Zhou , Bo Shi , Cici Fan , Ke Wang , Hao Zhang , Hong Li , Maofa Ge\",\"doi\":\"10.1016/j.jes.2022.08.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Branched alkanes are ubiquitous in the troposphere and play an important role in the chemical processes. In this work, the rate constants and products for the reaction of Cl atoms with 3-methylhexane and 2-methylheptane were measured at room temperature (298 ± 0.2 K) and atmospheric pressure using a conventional relative rate method. The rate constants of 3-methylhexane and 2-methylheptane in units of cm<sup>3</sup>/(mol·sec) are (3.09 ± 0.31) × 10<sup>−10</sup> and (3.67 ± 0.40) × 10<sup>−10</sup>, respectively. Furthermore, the corresponding atmospheric lifetime of the studied branched alkanes with Cl was 6.92-89.90 hours and 5.82-75.69 hours, respectively. The estimated atmospheric lifetimes indicated that the reaction with Cl atoms could be the most important atmospheric degradation pathway for 3-methylhexane and 2-methylheptane. Primary gas-phase products of the reactions were identified and quantified, and particle-phase products were also obtained. The atmosphere oxidation mechanism of Cl atoms with 3-methylhexane and 2-methylheptane is proposed. The SOA yields of 3-methylhexane and 2-methylheptane from the reaction of Cl atoms were determined to be 7.96% ± 0.89% and 13.35% ± 1.50% respectively. Overall, the results reveal that the primary loss process of branched alkanes is the reaction with Cl atoms, which impacts its degradation on a regional scale.</p></div>\",\"PeriodicalId\":15774,\"journal\":{\"name\":\"Journal of environmental sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2022-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of environmental sciences\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1001074222004119\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of environmental sciences","FirstCategoryId":"1089","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1001074222004119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
Kinetic and mechanism of the reaction between Cl and several mono-methyl branched alkanes
Branched alkanes are ubiquitous in the troposphere and play an important role in the chemical processes. In this work, the rate constants and products for the reaction of Cl atoms with 3-methylhexane and 2-methylheptane were measured at room temperature (298 ± 0.2 K) and atmospheric pressure using a conventional relative rate method. The rate constants of 3-methylhexane and 2-methylheptane in units of cm3/(mol·sec) are (3.09 ± 0.31) × 10−10 and (3.67 ± 0.40) × 10−10, respectively. Furthermore, the corresponding atmospheric lifetime of the studied branched alkanes with Cl was 6.92-89.90 hours and 5.82-75.69 hours, respectively. The estimated atmospheric lifetimes indicated that the reaction with Cl atoms could be the most important atmospheric degradation pathway for 3-methylhexane and 2-methylheptane. Primary gas-phase products of the reactions were identified and quantified, and particle-phase products were also obtained. The atmosphere oxidation mechanism of Cl atoms with 3-methylhexane and 2-methylheptane is proposed. The SOA yields of 3-methylhexane and 2-methylheptane from the reaction of Cl atoms were determined to be 7.96% ± 0.89% and 13.35% ± 1.50% respectively. Overall, the results reveal that the primary loss process of branched alkanes is the reaction with Cl atoms, which impacts its degradation on a regional scale.
期刊介绍:
Journal of Environmental Sciences is an international peer-reviewed journal established in 1989. It is sponsored by the Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, and it is jointly published by Elsevier and Science Press. It aims to foster interdisciplinary communication and promote understanding of significant environmental issues. The journal seeks to publish significant and novel research on the fate and behaviour of emerging contaminants, human impact on the environment, human exposure to environmental contaminants and their health effects, and environmental remediation and management. Original research articles, critical reviews, highlights, and perspectives of high quality are published both in print and online.