人源性耳蜗瘤病毒U6基因启动子的鉴定和功能分析。

IF 2.3 2区 农林科学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Insect Molecular Biology Pub Date : 2023-09-21 DOI:10.1111/imb.12875
Rossina Novas, Tatiana Basika, Megan E. Williamson, Pablo Fresia, Alejo Menchaca, Maxwell J. Scott
{"title":"人源性耳蜗瘤病毒U6基因启动子的鉴定和功能分析。","authors":"Rossina Novas,&nbsp;Tatiana Basika,&nbsp;Megan E. Williamson,&nbsp;Pablo Fresia,&nbsp;Alejo Menchaca,&nbsp;Maxwell J. Scott","doi":"10.1111/imb.12875","DOIUrl":null,"url":null,"abstract":"<p>The New World screwworm, <i>Cochliomyia hominivorax</i>, is an obligate parasite, which is a major pest of livestock. While the sterile insect technique was used very successfully to eradicate <i>C. hominivorax</i> from North and Central America, more cost-effective genetic methods will likely be needed in South America. The recent development of CRISPR/Cas9-based genetic approaches, such as homing gene drive, could provide a very efficient means for the suppression of <i>C. hominivorax</i> populations. One component of a drive system is the guide RNA(s) driven by a U6 gene promoter. Here, we have developed an <i>in vivo</i> assay to evaluate the activity of the promoters from seven <i>C. hominivorax</i> U6 genes. Embryos from the related blowfly <i>Lucilia cuprina</i> were injected with plasmid DNA containing a U6-promoter-guide RNA construct and a source of Cas9, either protein or plasmid DNA. Activity was assessed by the number of site-specific mutations in the targeted gene in hatched larvae. One promoter, <i>Chom U6_b</i>, showed the highest activity. These U6 gene promoters could be used to build CRISPR/Cas9-based genetic systems for the control of <i>C. hominivorax</i>.</p>","PeriodicalId":13526,"journal":{"name":"Insect Molecular Biology","volume":"32 6","pages":"716-724"},"PeriodicalIF":2.3000,"publicationDate":"2023-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification and functional analysis of Cochliomyia hominivorax U6 gene promoters\",\"authors\":\"Rossina Novas,&nbsp;Tatiana Basika,&nbsp;Megan E. Williamson,&nbsp;Pablo Fresia,&nbsp;Alejo Menchaca,&nbsp;Maxwell J. Scott\",\"doi\":\"10.1111/imb.12875\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The New World screwworm, <i>Cochliomyia hominivorax</i>, is an obligate parasite, which is a major pest of livestock. While the sterile insect technique was used very successfully to eradicate <i>C. hominivorax</i> from North and Central America, more cost-effective genetic methods will likely be needed in South America. The recent development of CRISPR/Cas9-based genetic approaches, such as homing gene drive, could provide a very efficient means for the suppression of <i>C. hominivorax</i> populations. One component of a drive system is the guide RNA(s) driven by a U6 gene promoter. Here, we have developed an <i>in vivo</i> assay to evaluate the activity of the promoters from seven <i>C. hominivorax</i> U6 genes. Embryos from the related blowfly <i>Lucilia cuprina</i> were injected with plasmid DNA containing a U6-promoter-guide RNA construct and a source of Cas9, either protein or plasmid DNA. Activity was assessed by the number of site-specific mutations in the targeted gene in hatched larvae. One promoter, <i>Chom U6_b</i>, showed the highest activity. These U6 gene promoters could be used to build CRISPR/Cas9-based genetic systems for the control of <i>C. hominivorax</i>.</p>\",\"PeriodicalId\":13526,\"journal\":{\"name\":\"Insect Molecular Biology\",\"volume\":\"32 6\",\"pages\":\"716-724\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Insect Molecular Biology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/imb.12875\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insect Molecular Biology","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/imb.12875","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

新大陆螺旋虫是一种专性寄生虫,是牲畜的主要害虫。虽然无菌昆虫技术在北美和中美洲被成功地用于根除人身线虫,但在南美洲可能需要更具成本效益的遗传方法。最近开发的基于CRISPR/Cas9的遗传方法,如归巢基因驱动,可以为抑制人源性嗜人疟原虫种群提供一种非常有效的手段。驱动系统的一个组成部分是由U6基因启动子驱动的引导RNA。在这里,我们开发了一种体内测定法来评估七个人源性嗜人酵母U6基因启动子的活性。用含有U6启动子引导RNA构建体和Cas9来源(蛋白质或质粒DNA)的质粒DNA注射来自相关的白蝇的胚胎。通过孵化幼虫中靶基因的位点特异性突变数量来评估活性。启动子ChomU6B的活性最高。这些U6基因启动子可用于构建基于CRISPR/Cas9的遗传系统,用于控制人源性嗜酸乳杆菌。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Identification and functional analysis of Cochliomyia hominivorax U6 gene promoters

The New World screwworm, Cochliomyia hominivorax, is an obligate parasite, which is a major pest of livestock. While the sterile insect technique was used very successfully to eradicate C. hominivorax from North and Central America, more cost-effective genetic methods will likely be needed in South America. The recent development of CRISPR/Cas9-based genetic approaches, such as homing gene drive, could provide a very efficient means for the suppression of C. hominivorax populations. One component of a drive system is the guide RNA(s) driven by a U6 gene promoter. Here, we have developed an in vivo assay to evaluate the activity of the promoters from seven C. hominivorax U6 genes. Embryos from the related blowfly Lucilia cuprina were injected with plasmid DNA containing a U6-promoter-guide RNA construct and a source of Cas9, either protein or plasmid DNA. Activity was assessed by the number of site-specific mutations in the targeted gene in hatched larvae. One promoter, Chom U6_b, showed the highest activity. These U6 gene promoters could be used to build CRISPR/Cas9-based genetic systems for the control of C. hominivorax.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Insect Molecular Biology
Insect Molecular Biology 生物-昆虫学
CiteScore
4.80
自引率
3.80%
发文量
68
审稿时长
6-12 weeks
期刊介绍: Insect Molecular Biology has been dedicated to providing researchers with the opportunity to publish high quality original research on topics broadly related to insect molecular biology since 1992. IMB is particularly interested in publishing research in insect genomics/genes and proteomics/proteins. This includes research related to: • insect gene structure • control of gene expression • localisation and function/activity of proteins • interactions of proteins and ligands/substrates • effect of mutations on gene/protein function • evolution of insect genes/genomes, especially where principles relevant to insects in general are established • molecular population genetics where data are used to identify genes (or regions of genomes) involved in specific adaptations • gene mapping using molecular tools • molecular interactions of insects with microorganisms including Wolbachia, symbionts and viruses or other pathogens transmitted by insects Papers can include large data sets e.g.from micro-array or proteomic experiments or analyses of genome sequences done in silico (subject to the data being placed in the context of hypothesis testing).
期刊最新文献
PBAN regulates sex pheromone biosynthesis by Ca2+/CaN/ACC and Ca2+/PKC/HK2 signal pathways in Spodoptera litura. The JNK signalling pathway gene BmJun is involved in the regulation of egg quality and production in the silkworm, Bombyx mori. Pleiotropic effects of Ebony on pigmentation and development in the Asian multi-coloured ladybird beetle, Harmonia axyridis (Coleoptera: Coccinellidae). Validation of selective catalytic BmCBP inhibitors that regulate the Bm30K-24 protein expression in silkworm, Bombyx mori. Host trees partially explain the complex bacterial communities of two threatened saproxylic beetles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1