EQUIBIND:一种基于几何深度学习的蛋白质配体结合预测方法。

IF 1.9 Q3 PHARMACOLOGY & PHARMACY Drug Discoveries and Therapeutics Pub Date : 2023-11-18 Epub Date: 2023-09-26 DOI:10.5582/ddt.2023.01063
Yuze Li, Li Li, Shuang Wang, Xiaowen Tang
{"title":"EQUIBIND:一种基于几何深度学习的蛋白质配体结合预测方法。","authors":"Yuze Li, Li Li, Shuang Wang, Xiaowen Tang","doi":"10.5582/ddt.2023.01063","DOIUrl":null,"url":null,"abstract":"<p><p>Structure-based virtual screening plays a critical role in drug discovery. However, numerous docking programs, such as AutoDock Vina and Glide, are time-consuming due to the necessity of generating numerous molecular conformations and executing steps like scoring, ranking, and refinement for the ligand-receptor complexes. Consequently, achieving rapid and reliable virtual screening remains a noteworthy challenge. Recently, a team of researchers from Massachusetts Institute of Technology, led by Stärk et al., developed an SE(3)-equivariant geometric deep learning based protein-ligand binding prediction approach, EQUIBIND. In comparison to conventional docking methods, EQUIBIND has the capacity to predict the binding modes of small molecules with target proteins rapidly and precisely. It presents an innovative resolution for high-throughput screening of drug-like compounds.</p>","PeriodicalId":47494,"journal":{"name":"Drug Discoveries and Therapeutics","volume":" ","pages":"363-364"},"PeriodicalIF":1.9000,"publicationDate":"2023-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EQUIBIND: A geometric deep learning-based protein-ligand binding prediction method.\",\"authors\":\"Yuze Li, Li Li, Shuang Wang, Xiaowen Tang\",\"doi\":\"10.5582/ddt.2023.01063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Structure-based virtual screening plays a critical role in drug discovery. However, numerous docking programs, such as AutoDock Vina and Glide, are time-consuming due to the necessity of generating numerous molecular conformations and executing steps like scoring, ranking, and refinement for the ligand-receptor complexes. Consequently, achieving rapid and reliable virtual screening remains a noteworthy challenge. Recently, a team of researchers from Massachusetts Institute of Technology, led by Stärk et al., developed an SE(3)-equivariant geometric deep learning based protein-ligand binding prediction approach, EQUIBIND. In comparison to conventional docking methods, EQUIBIND has the capacity to predict the binding modes of small molecules with target proteins rapidly and precisely. It presents an innovative resolution for high-throughput screening of drug-like compounds.</p>\",\"PeriodicalId\":47494,\"journal\":{\"name\":\"Drug Discoveries and Therapeutics\",\"volume\":\" \",\"pages\":\"363-364\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Discoveries and Therapeutics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5582/ddt.2023.01063\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/9/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Discoveries and Therapeutics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5582/ddt.2023.01063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/26 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

基于结构的虚拟筛选在药物发现中起着至关重要的作用。然而,许多对接程序,如AutoDock Vina和Glide,由于需要生成大量分子构象并执行配体-受体复合物的评分、排序和细化等步骤,因此非常耗时。因此,实现快速可靠的虚拟筛查仍然是一个值得注意的挑战。最近,由Stärk等人领导的麻省理工学院的一个研究小组开发了一种基于SE(3)等变几何深度学习的蛋白质配体结合预测方法EQUIBIND。与传统的对接方法相比,EQUIBIND能够快速准确地预测小分子与靶蛋白的结合模式。它为类药物化合物的高通量筛选提供了一种创新的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
EQUIBIND: A geometric deep learning-based protein-ligand binding prediction method.

Structure-based virtual screening plays a critical role in drug discovery. However, numerous docking programs, such as AutoDock Vina and Glide, are time-consuming due to the necessity of generating numerous molecular conformations and executing steps like scoring, ranking, and refinement for the ligand-receptor complexes. Consequently, achieving rapid and reliable virtual screening remains a noteworthy challenge. Recently, a team of researchers from Massachusetts Institute of Technology, led by Stärk et al., developed an SE(3)-equivariant geometric deep learning based protein-ligand binding prediction approach, EQUIBIND. In comparison to conventional docking methods, EQUIBIND has the capacity to predict the binding modes of small molecules with target proteins rapidly and precisely. It presents an innovative resolution for high-throughput screening of drug-like compounds.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Drug Discoveries and Therapeutics
Drug Discoveries and Therapeutics PHARMACOLOGY & PHARMACY-
CiteScore
3.20
自引率
3.20%
发文量
51
期刊最新文献
Astaxanthin compound nutrient improved insulin resistance, hormone levels, embryo quality and pregnancy outcomes in polycystic ovary syndrome patients undergoing in vitro fertilization/intracytoplasmic sperm injection. Electrolytic-reduction ion water protects keratinocytes from hydrogen peroxide through radical scavenging activity and induction of AQP3 expression. A stroke patient with persistently intermittent fever treated with gabapentin: A clinical case. Effect of switching from dulaglutide to tirzepatide on blood glucose and renal function. General selection criteria for safety and patient benefit [XⅢ]: Comparing the formulation characteristics of brand-name and generic bifonazole creams.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1