优化人类自发大脑活动个体差异的网络神经科学计算,以提高测试的可靠性。

IF 3.6 3区 医学 Q2 NEUROSCIENCES Network Neuroscience Pub Date : 2023-10-01 eCollection Date: 2023-01-01 DOI:10.1162/netn_a_00315
Chao Jiang, Ye He, Richard F Betzel, Yin-Shan Wang, Xiu-Xia Xing, Xi-Nian Zuo
{"title":"优化人类自发大脑活动个体差异的网络神经科学计算,以提高测试的可靠性。","authors":"Chao Jiang, Ye He, Richard F Betzel, Yin-Shan Wang, Xiu-Xia Xing, Xi-Nian Zuo","doi":"10.1162/netn_a_00315","DOIUrl":null,"url":null,"abstract":"<p><p>A rapidly emerging application of network neuroscience in neuroimaging studies has provided useful tools to understand individual differences in intrinsic brain function by mapping spontaneous brain activity, namely intrinsic functional network neuroscience (ifNN). However, the variability of methodologies applied across the ifNN studies-with respect to node definition, edge construction, and graph measurements-makes it difficult to directly compare findings and also challenging for end users to select the optimal strategies for mapping individual differences in brain networks. Here, we aim to provide a benchmark for best ifNN practices by systematically comparing the measurement reliability of individual differences under different ifNN analytical strategies using the test-retest design of the Human Connectome Project. The results uncovered four essential principles to guide ifNN studies: (1) use a whole brain parcellation to define network nodes, including subcortical and cerebellar regions; (2) construct functional networks using spontaneous brain activity in multiple slow bands; and (3) optimize topological economy of networks at individual level; and (4) characterize information flow with specific metrics of integration and segregation. We built an interactive online resource of reliability assessments for future ifNN (https://ibraindata.com/research/ifNN).</p>","PeriodicalId":48520,"journal":{"name":"Network Neuroscience","volume":"7 3","pages":"1080-1108"},"PeriodicalIF":3.6000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10473278/pdf/","citationCount":"0","resultStr":"{\"title\":\"Optimizing network neuroscience computation of individual differences in human spontaneous brain activity for test-retest reliability.\",\"authors\":\"Chao Jiang, Ye He, Richard F Betzel, Yin-Shan Wang, Xiu-Xia Xing, Xi-Nian Zuo\",\"doi\":\"10.1162/netn_a_00315\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A rapidly emerging application of network neuroscience in neuroimaging studies has provided useful tools to understand individual differences in intrinsic brain function by mapping spontaneous brain activity, namely intrinsic functional network neuroscience (ifNN). However, the variability of methodologies applied across the ifNN studies-with respect to node definition, edge construction, and graph measurements-makes it difficult to directly compare findings and also challenging for end users to select the optimal strategies for mapping individual differences in brain networks. Here, we aim to provide a benchmark for best ifNN practices by systematically comparing the measurement reliability of individual differences under different ifNN analytical strategies using the test-retest design of the Human Connectome Project. The results uncovered four essential principles to guide ifNN studies: (1) use a whole brain parcellation to define network nodes, including subcortical and cerebellar regions; (2) construct functional networks using spontaneous brain activity in multiple slow bands; and (3) optimize topological economy of networks at individual level; and (4) characterize information flow with specific metrics of integration and segregation. We built an interactive online resource of reliability assessments for future ifNN (https://ibraindata.com/research/ifNN).</p>\",\"PeriodicalId\":48520,\"journal\":{\"name\":\"Network Neuroscience\",\"volume\":\"7 3\",\"pages\":\"1080-1108\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10473278/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Network Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1162/netn_a_00315\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1162/netn_a_00315","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

网络神经科学在神经影像学研究中的快速应用为通过绘制自发大脑活动来理解个体内在大脑功能的差异提供了有用的工具,即内在功能网络神经科学(ifNN)。然而,ifNN研究中应用的方法在节点定义、边缘构建和图形测量方面的可变性使得直接比较研究结果变得困难,最终用户也很难选择映射大脑网络中个体差异的最佳策略。在这里,我们的目标是通过使用人类连接体项目的重测设计,系统地比较不同ifNN分析策略下个体差异的测量可靠性,为最佳ifNN实践提供一个基准。研究结果揭示了指导ifNN研究的四个基本原则:(1)使用全脑分割来定义网络节点,包括皮层下和小脑区域;(2) 利用多个慢带的自发大脑活动构建功能网络;以及(3)在个体层面上优化网络的拓扑经济性;以及(4)用集成和分离的特定度量来表征信息流。我们为未来的ifNN建立了一个交互式在线可靠性评估资源(https://ibraindata.com/research/ifNN)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimizing network neuroscience computation of individual differences in human spontaneous brain activity for test-retest reliability.

A rapidly emerging application of network neuroscience in neuroimaging studies has provided useful tools to understand individual differences in intrinsic brain function by mapping spontaneous brain activity, namely intrinsic functional network neuroscience (ifNN). However, the variability of methodologies applied across the ifNN studies-with respect to node definition, edge construction, and graph measurements-makes it difficult to directly compare findings and also challenging for end users to select the optimal strategies for mapping individual differences in brain networks. Here, we aim to provide a benchmark for best ifNN practices by systematically comparing the measurement reliability of individual differences under different ifNN analytical strategies using the test-retest design of the Human Connectome Project. The results uncovered four essential principles to guide ifNN studies: (1) use a whole brain parcellation to define network nodes, including subcortical and cerebellar regions; (2) construct functional networks using spontaneous brain activity in multiple slow bands; and (3) optimize topological economy of networks at individual level; and (4) characterize information flow with specific metrics of integration and segregation. We built an interactive online resource of reliability assessments for future ifNN (https://ibraindata.com/research/ifNN).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Network Neuroscience
Network Neuroscience NEUROSCIENCES-
CiteScore
6.40
自引率
6.40%
发文量
68
审稿时长
16 weeks
期刊最新文献
Brain signaling becomes less integrated and more segregated with age. CoCoNest: A continuous structural connectivity-based nested family of parcellations of the human cerebral cortex. Cognitive abilities are associated with rapid dynamics of electrophysiological connectome states. Contrasting topologies of synchronous and asynchronous functional brain networks. Exploring memory-related network via dorsal hippocampus suppression.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1