{"title":"模块4-缺乏CCN2/结缔组织生长因子通过抑制肾小管上皮细胞中的局灶性粘附激酶磷酸化来减轻肾纤维化的进展。","authors":"Hiroaki Amano, Tsutomu Inoue, Takeru Kusano, Daichi Fukaya, Wakako Kosakai, Hirokazu Okada","doi":"10.1080/10985549.2023.2253130","DOIUrl":null,"url":null,"abstract":"<p><p>CCN2/connective tissue growth factor (CTGF) potentially serves as a therapeutic target for chronic kidney disease. Here we investigated CCN2 module-4, encoded by <i>Ccn2</i> exon 5, through the generation of <i>Ccn2</i> exon 5 knockout mice (<i>Ex5<sup>-/-</sup></i> mice). To investigate renal fibrosis pathogenesis, <i>Ex5<sup>-/-</sup></i> mice were employed to model unilateral ureteral obstruction (UUO), unilateral ischemic-reperfusion injury (UIRI), and 5/6 nephrectomy. Interstitial fibrosis was significantly attenuated in the <i>Ex5<sup>-/-</sup></i> mice in the three models. Furthermore, phosphorylated focal adhesion kinase (FAK) levels in tubular epithelial cells were significantly lower in the kidneys of the UUO- and UIRI-<i>Ex5<sup>-/-</sup></i> mice than those of the <i>Ex5<sup>+/+</sup></i> mice. Moreover, CCN2 module 4-mediated renal tubule FAK and promoted fibrosis. These findings indicate that CCN2 module-4-FAK pathway components will serve as therapeutic targets for effectively attenuating renal fibrosis.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10569360/pdf/","citationCount":"0","resultStr":"{\"title\":\"Module 4-Deficient CCN2/Connective Tissue Growth Factor Attenuates the Progression of Renal Fibrosis via Suppression of Focal Adhesion Kinase Phosphorylation in Tubular Epithelial Cells.\",\"authors\":\"Hiroaki Amano, Tsutomu Inoue, Takeru Kusano, Daichi Fukaya, Wakako Kosakai, Hirokazu Okada\",\"doi\":\"10.1080/10985549.2023.2253130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>CCN2/connective tissue growth factor (CTGF) potentially serves as a therapeutic target for chronic kidney disease. Here we investigated CCN2 module-4, encoded by <i>Ccn2</i> exon 5, through the generation of <i>Ccn2</i> exon 5 knockout mice (<i>Ex5<sup>-/-</sup></i> mice). To investigate renal fibrosis pathogenesis, <i>Ex5<sup>-/-</sup></i> mice were employed to model unilateral ureteral obstruction (UUO), unilateral ischemic-reperfusion injury (UIRI), and 5/6 nephrectomy. Interstitial fibrosis was significantly attenuated in the <i>Ex5<sup>-/-</sup></i> mice in the three models. Furthermore, phosphorylated focal adhesion kinase (FAK) levels in tubular epithelial cells were significantly lower in the kidneys of the UUO- and UIRI-<i>Ex5<sup>-/-</sup></i> mice than those of the <i>Ex5<sup>+/+</sup></i> mice. Moreover, CCN2 module 4-mediated renal tubule FAK and promoted fibrosis. These findings indicate that CCN2 module-4-FAK pathway components will serve as therapeutic targets for effectively attenuating renal fibrosis.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10569360/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/10985549.2023.2253130\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/10/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/10985549.2023.2253130","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/11 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Module 4-Deficient CCN2/Connective Tissue Growth Factor Attenuates the Progression of Renal Fibrosis via Suppression of Focal Adhesion Kinase Phosphorylation in Tubular Epithelial Cells.
CCN2/connective tissue growth factor (CTGF) potentially serves as a therapeutic target for chronic kidney disease. Here we investigated CCN2 module-4, encoded by Ccn2 exon 5, through the generation of Ccn2 exon 5 knockout mice (Ex5-/- mice). To investigate renal fibrosis pathogenesis, Ex5-/- mice were employed to model unilateral ureteral obstruction (UUO), unilateral ischemic-reperfusion injury (UIRI), and 5/6 nephrectomy. Interstitial fibrosis was significantly attenuated in the Ex5-/- mice in the three models. Furthermore, phosphorylated focal adhesion kinase (FAK) levels in tubular epithelial cells were significantly lower in the kidneys of the UUO- and UIRI-Ex5-/- mice than those of the Ex5+/+ mice. Moreover, CCN2 module 4-mediated renal tubule FAK and promoted fibrosis. These findings indicate that CCN2 module-4-FAK pathway components will serve as therapeutic targets for effectively attenuating renal fibrosis.