Heming Zhang, Chun Meng, Xin Di, Xiao Wu, Bharat Biswal
{"title":"静态和动态功能连接组揭示了整个大脑网络在认知状态下的重构特征。","authors":"Heming Zhang, Chun Meng, Xin Di, Xiao Wu, Bharat Biswal","doi":"10.1162/netn_a_00314","DOIUrl":null,"url":null,"abstract":"<p><p>Assessment of functional connectivity (FC) has revealed a great deal of knowledge about the macroscale spatiotemporal organization of the brain network. Recent studies found task-versus-rest network reconfigurations were crucial for cognitive functioning. However, brain network reconfiguration remains unclear among different cognitive states, considering both aggregate and time-resolved FC profiles. The current study utilized static FC (sFC, i.e., long timescale aggregate FC) and sliding window-based dynamic FC (dFC, i.e., short timescale time-varying FC) approaches to investigate the similarity and alterations of edge weights and network topology at different cognitive loads, particularly their relationships with specific cognitive process. Both dFC/sFC networks showed subtle but significant reconfigurations that correlated with task performance. At higher cognitive load, brain network reconfiguration displayed increased functional integration in the sFC-based aggregate network, but faster and larger variability of modular reorganization in the dFC-based time-varying network, suggesting difficult tasks require more integrated and flexible network reconfigurations. Moreover, sFC-based network reconfigurations mainly linked with the sensorimotor and low-order cognitive processes, but dFC-based network reconfigurations mainly linked with the high-order cognitive process. Our findings suggest that reconfiguration profiles of sFC/dFC networks provide specific information about cognitive functioning, which could potentially be used to study brain function and disorders.</p>","PeriodicalId":48520,"journal":{"name":"Network Neuroscience","volume":"7 3","pages":"1034-1050"},"PeriodicalIF":3.6000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10473282/pdf/","citationCount":"0","resultStr":"{\"title\":\"Static and dynamic functional connectome reveals reconfiguration profiles of whole-brain network across cognitive states.\",\"authors\":\"Heming Zhang, Chun Meng, Xin Di, Xiao Wu, Bharat Biswal\",\"doi\":\"10.1162/netn_a_00314\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Assessment of functional connectivity (FC) has revealed a great deal of knowledge about the macroscale spatiotemporal organization of the brain network. Recent studies found task-versus-rest network reconfigurations were crucial for cognitive functioning. However, brain network reconfiguration remains unclear among different cognitive states, considering both aggregate and time-resolved FC profiles. The current study utilized static FC (sFC, i.e., long timescale aggregate FC) and sliding window-based dynamic FC (dFC, i.e., short timescale time-varying FC) approaches to investigate the similarity and alterations of edge weights and network topology at different cognitive loads, particularly their relationships with specific cognitive process. Both dFC/sFC networks showed subtle but significant reconfigurations that correlated with task performance. At higher cognitive load, brain network reconfiguration displayed increased functional integration in the sFC-based aggregate network, but faster and larger variability of modular reorganization in the dFC-based time-varying network, suggesting difficult tasks require more integrated and flexible network reconfigurations. Moreover, sFC-based network reconfigurations mainly linked with the sensorimotor and low-order cognitive processes, but dFC-based network reconfigurations mainly linked with the high-order cognitive process. Our findings suggest that reconfiguration profiles of sFC/dFC networks provide specific information about cognitive functioning, which could potentially be used to study brain function and disorders.</p>\",\"PeriodicalId\":48520,\"journal\":{\"name\":\"Network Neuroscience\",\"volume\":\"7 3\",\"pages\":\"1034-1050\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10473282/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Network Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1162/netn_a_00314\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1162/netn_a_00314","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Static and dynamic functional connectome reveals reconfiguration profiles of whole-brain network across cognitive states.
Assessment of functional connectivity (FC) has revealed a great deal of knowledge about the macroscale spatiotemporal organization of the brain network. Recent studies found task-versus-rest network reconfigurations were crucial for cognitive functioning. However, brain network reconfiguration remains unclear among different cognitive states, considering both aggregate and time-resolved FC profiles. The current study utilized static FC (sFC, i.e., long timescale aggregate FC) and sliding window-based dynamic FC (dFC, i.e., short timescale time-varying FC) approaches to investigate the similarity and alterations of edge weights and network topology at different cognitive loads, particularly their relationships with specific cognitive process. Both dFC/sFC networks showed subtle but significant reconfigurations that correlated with task performance. At higher cognitive load, brain network reconfiguration displayed increased functional integration in the sFC-based aggregate network, but faster and larger variability of modular reorganization in the dFC-based time-varying network, suggesting difficult tasks require more integrated and flexible network reconfigurations. Moreover, sFC-based network reconfigurations mainly linked with the sensorimotor and low-order cognitive processes, but dFC-based network reconfigurations mainly linked with the high-order cognitive process. Our findings suggest that reconfiguration profiles of sFC/dFC networks provide specific information about cognitive functioning, which could potentially be used to study brain function and disorders.