Tianyu Pan, Weining Shen, Clintin P. Davis-Stober, Guanyu Hu
{"title":"一种处理评估数据中项目和受试者异质性的贝叶斯非参数方法。","authors":"Tianyu Pan, Weining Shen, Clintin P. Davis-Stober, Guanyu Hu","doi":"10.1111/bmsp.12322","DOIUrl":null,"url":null,"abstract":"<p>We propose a novel nonparametric Bayesian item response theory model that estimates clusters at the question level, while simultaneously allowing for heterogeneity at the examinee level under each question cluster, characterized by a mixture of binomial distributions. The main contribution of this work is threefold. First, we present our new model and demonstrate that it is identifiable under a set of conditions. Second, we show that our model can correctly identify question-level clusters asymptotically, and the parameters of interest that measure the proficiency of examinees in solving certain questions can be estimated at a <math>\n <semantics>\n <mrow>\n <msqrt>\n <mrow>\n <mi>n</mi>\n </mrow>\n </msqrt>\n </mrow>\n </semantics></math> rate (up to a log term). Third, we present a tractable sampling algorithm to obtain valid posterior samples from our proposed model. Compared to the existing methods, our model manages to reveal the multi-dimensionality of the examinees' proficiency level in handling different types of questions parsimoniously by imposing a nested clustering structure. The proposed model is evaluated via a series of simulations as well as apply it to an English proficiency assessment data set. This data analysis example nicely illustrates how our model can be used by test makers to distinguish different types of students and aid in the design of future tests.</p>","PeriodicalId":55322,"journal":{"name":"British Journal of Mathematical & Statistical Psychology","volume":"77 1","pages":"196-211"},"PeriodicalIF":1.5000,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Bayesian nonparametric approach for handling item and examinee heterogeneity in assessment data\",\"authors\":\"Tianyu Pan, Weining Shen, Clintin P. Davis-Stober, Guanyu Hu\",\"doi\":\"10.1111/bmsp.12322\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We propose a novel nonparametric Bayesian item response theory model that estimates clusters at the question level, while simultaneously allowing for heterogeneity at the examinee level under each question cluster, characterized by a mixture of binomial distributions. The main contribution of this work is threefold. First, we present our new model and demonstrate that it is identifiable under a set of conditions. Second, we show that our model can correctly identify question-level clusters asymptotically, and the parameters of interest that measure the proficiency of examinees in solving certain questions can be estimated at a <math>\\n <semantics>\\n <mrow>\\n <msqrt>\\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n </msqrt>\\n </mrow>\\n </semantics></math> rate (up to a log term). Third, we present a tractable sampling algorithm to obtain valid posterior samples from our proposed model. Compared to the existing methods, our model manages to reveal the multi-dimensionality of the examinees' proficiency level in handling different types of questions parsimoniously by imposing a nested clustering structure. The proposed model is evaluated via a series of simulations as well as apply it to an English proficiency assessment data set. This data analysis example nicely illustrates how our model can be used by test makers to distinguish different types of students and aid in the design of future tests.</p>\",\"PeriodicalId\":55322,\"journal\":{\"name\":\"British Journal of Mathematical & Statistical Psychology\",\"volume\":\"77 1\",\"pages\":\"196-211\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"British Journal of Mathematical & Statistical Psychology\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/bmsp.12322\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"British Journal of Mathematical & Statistical Psychology","FirstCategoryId":"102","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/bmsp.12322","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
A Bayesian nonparametric approach for handling item and examinee heterogeneity in assessment data
We propose a novel nonparametric Bayesian item response theory model that estimates clusters at the question level, while simultaneously allowing for heterogeneity at the examinee level under each question cluster, characterized by a mixture of binomial distributions. The main contribution of this work is threefold. First, we present our new model and demonstrate that it is identifiable under a set of conditions. Second, we show that our model can correctly identify question-level clusters asymptotically, and the parameters of interest that measure the proficiency of examinees in solving certain questions can be estimated at a rate (up to a log term). Third, we present a tractable sampling algorithm to obtain valid posterior samples from our proposed model. Compared to the existing methods, our model manages to reveal the multi-dimensionality of the examinees' proficiency level in handling different types of questions parsimoniously by imposing a nested clustering structure. The proposed model is evaluated via a series of simulations as well as apply it to an English proficiency assessment data set. This data analysis example nicely illustrates how our model can be used by test makers to distinguish different types of students and aid in the design of future tests.
期刊介绍:
The British Journal of Mathematical and Statistical Psychology publishes articles relating to areas of psychology which have a greater mathematical or statistical aspect of their argument than is usually acceptable to other journals including:
• mathematical psychology
• statistics
• psychometrics
• decision making
• psychophysics
• classification
• relevant areas of mathematics, computing and computer software
These include articles that address substantitive psychological issues or that develop and extend techniques useful to psychologists. New models for psychological processes, new approaches to existing data, critiques of existing models and improved algorithms for estimating the parameters of a model are examples of articles which may be favoured.