Xue Liu, Jiaqi Wu, Shan Yang, Lingyu Li, Yibing Ji
{"title":"羧官能化共价有机骨架作为脂肪酶固定化载体及其在抑制剂筛选中的应用。","authors":"Xue Liu, Jiaqi Wu, Shan Yang, Lingyu Li, Yibing Ji","doi":"10.1007/s12010-023-04725-1","DOIUrl":null,"url":null,"abstract":"<div><p>Covalent organic frameworks (COFs) with large specific surface areas, high porosity, good stability, and designable structure are promising carriers for immobilized enzymes. It is important to explore lipase inhibitors from natural foods as lipase inhibitors are closely related to the treatment of obesity. In this work, a carboxyl functionalized covalent organic framework (TpBD-3COOH) was prepared by solvothermal method for covalent immobilization of porcine pancreatic lipase (PPL) and obtained the enzyme-decorated COF (PPL@COF). The immobilized lipase showed wider pH and temperature tolerance with the same optimal pH and temperature of 7.5 and 50 ℃ compared to free lipase. After 6 successive reuses, the PPL@COF maintained 53.0% of its original activity. Immobilized lipase also displayed enhanced storage stability (55.4% after 14 days at 4 ℃). When p-nitrophenyl acetate was applied as the substrate, the calculated Michaelis constant was 3.57 mM and the half maximal inhibitory concentration of orlistat was 3.20 μM. Finally, the PPL@COF was used for enzyme inhibitors screening from natural foods combined with UV spectrophotometry, and Hawthorn was screened for excellent lipase inhibitory activity.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":"196 7","pages":"4024 - 4037"},"PeriodicalIF":3.1000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Carboxy-Functionalized Covalent Organic Framework as a Carrier for Lipase Immobilization and Its Application in Inhibitors Screening\",\"authors\":\"Xue Liu, Jiaqi Wu, Shan Yang, Lingyu Li, Yibing Ji\",\"doi\":\"10.1007/s12010-023-04725-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Covalent organic frameworks (COFs) with large specific surface areas, high porosity, good stability, and designable structure are promising carriers for immobilized enzymes. It is important to explore lipase inhibitors from natural foods as lipase inhibitors are closely related to the treatment of obesity. In this work, a carboxyl functionalized covalent organic framework (TpBD-3COOH) was prepared by solvothermal method for covalent immobilization of porcine pancreatic lipase (PPL) and obtained the enzyme-decorated COF (PPL@COF). The immobilized lipase showed wider pH and temperature tolerance with the same optimal pH and temperature of 7.5 and 50 ℃ compared to free lipase. After 6 successive reuses, the PPL@COF maintained 53.0% of its original activity. Immobilized lipase also displayed enhanced storage stability (55.4% after 14 days at 4 ℃). When p-nitrophenyl acetate was applied as the substrate, the calculated Michaelis constant was 3.57 mM and the half maximal inhibitory concentration of orlistat was 3.20 μM. Finally, the PPL@COF was used for enzyme inhibitors screening from natural foods combined with UV spectrophotometry, and Hawthorn was screened for excellent lipase inhibitory activity.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":465,\"journal\":{\"name\":\"Applied Biochemistry and Biotechnology\",\"volume\":\"196 7\",\"pages\":\"4024 - 4037\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Biochemistry and Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12010-023-04725-1\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Biochemistry and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s12010-023-04725-1","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Carboxy-Functionalized Covalent Organic Framework as a Carrier for Lipase Immobilization and Its Application in Inhibitors Screening
Covalent organic frameworks (COFs) with large specific surface areas, high porosity, good stability, and designable structure are promising carriers for immobilized enzymes. It is important to explore lipase inhibitors from natural foods as lipase inhibitors are closely related to the treatment of obesity. In this work, a carboxyl functionalized covalent organic framework (TpBD-3COOH) was prepared by solvothermal method for covalent immobilization of porcine pancreatic lipase (PPL) and obtained the enzyme-decorated COF (PPL@COF). The immobilized lipase showed wider pH and temperature tolerance with the same optimal pH and temperature of 7.5 and 50 ℃ compared to free lipase. After 6 successive reuses, the PPL@COF maintained 53.0% of its original activity. Immobilized lipase also displayed enhanced storage stability (55.4% after 14 days at 4 ℃). When p-nitrophenyl acetate was applied as the substrate, the calculated Michaelis constant was 3.57 mM and the half maximal inhibitory concentration of orlistat was 3.20 μM. Finally, the PPL@COF was used for enzyme inhibitors screening from natural foods combined with UV spectrophotometry, and Hawthorn was screened for excellent lipase inhibitory activity.
期刊介绍:
This journal is devoted to publishing the highest quality innovative papers in the fields of biochemistry and biotechnology. The typical focus of the journal is to report applications of novel scientific and technological breakthroughs, as well as technological subjects that are still in the proof-of-concept stage. Applied Biochemistry and Biotechnology provides a forum for case studies and practical concepts of biotechnology, utilization, including controls, statistical data analysis, problem descriptions unique to a particular application, and bioprocess economic analyses. The journal publishes reviews deemed of interest to readers, as well as book reviews, meeting and symposia notices, and news items relating to biotechnology in both the industrial and academic communities.
In addition, Applied Biochemistry and Biotechnology often publishes lists of patents and publications of special interest to readers.