Lili Li, Jianghui Zhao, Fengcang Ma, Daihua He, Ping Liu, Wei Li, Ke Zhang, Xiaohong Chen, Lin Song
{"title":"镁掺杂的载Icariin的ZIF-8及其抗菌和成骨性能。","authors":"Lili Li, Jianghui Zhao, Fengcang Ma, Daihua He, Ping Liu, Wei Li, Ke Zhang, Xiaohong Chen, Lin Song","doi":"10.1007/s10856-023-06755-x","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, ICA@Mg-ZIF-8 was synthesized by Mg doping in ZIF-8 and loaded with icariin (ICA). The morphologies and phases were observed and analyzed by SEM, XRD, and the release behaviors of Mg, Zn ions and ICA were tested. Its antibacterial and mineralization performances were evaluated. The results showed that ICA@Mg-ZIF-8 has the same morphology and crystal structure as ZIF-8. ICA@Mg-ZIF-8 showed enhanced antibacterial activity against <i>Escherichia coli</i> and <i>Staphylococcus aureus</i>, and the antibacterial rate was increased to 87.7 % and 64.0 %, respectively. The results of in vitro mineralization showed that ICA@Mg-ZIF-8 presented better osteogenic performance promoting the uniform deposition of more calcium and phosphorus in simulated body fluids compared to ZIF-8.</p><h3>Graphical Abstract</h3>\n <div><figure><div><div><picture><source><img></source></picture></div></div></figure></div>\n </div>","PeriodicalId":647,"journal":{"name":"Journal of Materials Science: Materials in Medicine","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10570214/pdf/","citationCount":"0","resultStr":"{\"title\":\"The Mg doping ZIF-8 loaded with Icariin and its antibacterial and osteogenic performances\",\"authors\":\"Lili Li, Jianghui Zhao, Fengcang Ma, Daihua He, Ping Liu, Wei Li, Ke Zhang, Xiaohong Chen, Lin Song\",\"doi\":\"10.1007/s10856-023-06755-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, ICA@Mg-ZIF-8 was synthesized by Mg doping in ZIF-8 and loaded with icariin (ICA). The morphologies and phases were observed and analyzed by SEM, XRD, and the release behaviors of Mg, Zn ions and ICA were tested. Its antibacterial and mineralization performances were evaluated. The results showed that ICA@Mg-ZIF-8 has the same morphology and crystal structure as ZIF-8. ICA@Mg-ZIF-8 showed enhanced antibacterial activity against <i>Escherichia coli</i> and <i>Staphylococcus aureus</i>, and the antibacterial rate was increased to 87.7 % and 64.0 %, respectively. The results of in vitro mineralization showed that ICA@Mg-ZIF-8 presented better osteogenic performance promoting the uniform deposition of more calcium and phosphorus in simulated body fluids compared to ZIF-8.</p><h3>Graphical Abstract</h3>\\n <div><figure><div><div><picture><source><img></source></picture></div></div></figure></div>\\n </div>\",\"PeriodicalId\":647,\"journal\":{\"name\":\"Journal of Materials Science: Materials in Medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2023-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10570214/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Science: Materials in Medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10856-023-06755-x\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science: Materials in Medicine","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10856-023-06755-x","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
The Mg doping ZIF-8 loaded with Icariin and its antibacterial and osteogenic performances
In this study, ICA@Mg-ZIF-8 was synthesized by Mg doping in ZIF-8 and loaded with icariin (ICA). The morphologies and phases were observed and analyzed by SEM, XRD, and the release behaviors of Mg, Zn ions and ICA were tested. Its antibacterial and mineralization performances were evaluated. The results showed that ICA@Mg-ZIF-8 has the same morphology and crystal structure as ZIF-8. ICA@Mg-ZIF-8 showed enhanced antibacterial activity against Escherichia coli and Staphylococcus aureus, and the antibacterial rate was increased to 87.7 % and 64.0 %, respectively. The results of in vitro mineralization showed that ICA@Mg-ZIF-8 presented better osteogenic performance promoting the uniform deposition of more calcium and phosphorus in simulated body fluids compared to ZIF-8.
期刊介绍:
The Journal of Materials Science: Materials in Medicine publishes refereed papers providing significant progress in the application of biomaterials and tissue engineering constructs as medical or dental implants, prostheses and devices. Coverage spans a wide range of topics from basic science to clinical applications, around the theme of materials in medicine and dentistry. The central element is the development of synthetic and natural materials used in orthopaedic, maxillofacial, cardiovascular, neurological, ophthalmic and dental applications. Special biomedical topics include biomaterial synthesis and characterisation, biocompatibility studies, nanomedicine, tissue engineering constructs and cell substrates, regenerative medicine, computer modelling and other advanced experimental methodologies.