{"title":"提高我们对测试中预测偏差的理解。","authors":"Herman Aguinis, Steven A Culpepper","doi":"10.1037/apl0001152","DOIUrl":null,"url":null,"abstract":"<p><p>Predictive bias (i.e., differential prediction) means that regression equations predicting performance differ across groups based on protected status (e.g., ethnicity, sexual orientation, sexual identity, pregnancy, disability, and religion). Thus, making prescreening, admissions, and selection decisions when predictive bias exists violates principles of fairness based on equal treatment and opportunity. First, we conducted a two-part study showing that different types of predictive bias exist. Specifically, we conducted a Monte Carlo simulation showing that out-of-sample predictions provide a more precise understanding of the nature of predictive bias-whether it is based on intercept and/or slope differences across groups. Then, we conducted a college admissions study based on 29,734 Black and 304,372 White students, and 35,681 Latinx and 308,818 White students and provided evidence about the existence of both intercept- and slope-based predictive bias. Third, we discuss the nature and different types of predictive bias and offer analytical work to explain why each type exists, thereby providing insights into the causes of different types of predictive bias. We also map the statistical causes of predictive bias onto the existing literature on likely underlying psychological and contextual mechanisms. Overall, we hope our article will help reorient future predictive bias research from whether it exists to the why of different types of predictive bias. (PsycInfo Database Record (c) 2024 APA, all rights reserved).</p>","PeriodicalId":15135,"journal":{"name":"Journal of Applied Psychology","volume":" ","pages":"402-414"},"PeriodicalIF":9.4000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving our understanding of predictive bias in testing.\",\"authors\":\"Herman Aguinis, Steven A Culpepper\",\"doi\":\"10.1037/apl0001152\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Predictive bias (i.e., differential prediction) means that regression equations predicting performance differ across groups based on protected status (e.g., ethnicity, sexual orientation, sexual identity, pregnancy, disability, and religion). Thus, making prescreening, admissions, and selection decisions when predictive bias exists violates principles of fairness based on equal treatment and opportunity. First, we conducted a two-part study showing that different types of predictive bias exist. Specifically, we conducted a Monte Carlo simulation showing that out-of-sample predictions provide a more precise understanding of the nature of predictive bias-whether it is based on intercept and/or slope differences across groups. Then, we conducted a college admissions study based on 29,734 Black and 304,372 White students, and 35,681 Latinx and 308,818 White students and provided evidence about the existence of both intercept- and slope-based predictive bias. Third, we discuss the nature and different types of predictive bias and offer analytical work to explain why each type exists, thereby providing insights into the causes of different types of predictive bias. We also map the statistical causes of predictive bias onto the existing literature on likely underlying psychological and contextual mechanisms. Overall, we hope our article will help reorient future predictive bias research from whether it exists to the why of different types of predictive bias. (PsycInfo Database Record (c) 2024 APA, all rights reserved).</p>\",\"PeriodicalId\":15135,\"journal\":{\"name\":\"Journal of Applied Psychology\",\"volume\":\" \",\"pages\":\"402-414\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Psychology\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1037/apl0001152\",\"RegionNum\":1,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/10/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MANAGEMENT\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Psychology","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1037/apl0001152","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/12 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MANAGEMENT","Score":null,"Total":0}
Improving our understanding of predictive bias in testing.
Predictive bias (i.e., differential prediction) means that regression equations predicting performance differ across groups based on protected status (e.g., ethnicity, sexual orientation, sexual identity, pregnancy, disability, and religion). Thus, making prescreening, admissions, and selection decisions when predictive bias exists violates principles of fairness based on equal treatment and opportunity. First, we conducted a two-part study showing that different types of predictive bias exist. Specifically, we conducted a Monte Carlo simulation showing that out-of-sample predictions provide a more precise understanding of the nature of predictive bias-whether it is based on intercept and/or slope differences across groups. Then, we conducted a college admissions study based on 29,734 Black and 304,372 White students, and 35,681 Latinx and 308,818 White students and provided evidence about the existence of both intercept- and slope-based predictive bias. Third, we discuss the nature and different types of predictive bias and offer analytical work to explain why each type exists, thereby providing insights into the causes of different types of predictive bias. We also map the statistical causes of predictive bias onto the existing literature on likely underlying psychological and contextual mechanisms. Overall, we hope our article will help reorient future predictive bias research from whether it exists to the why of different types of predictive bias. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
期刊介绍:
The Journal of Applied Psychology® focuses on publishing original investigations that contribute new knowledge and understanding to fields of applied psychology (excluding clinical and applied experimental or human factors, which are better suited for other APA journals). The journal primarily considers empirical and theoretical investigations that enhance understanding of cognitive, motivational, affective, and behavioral psychological phenomena in work and organizational settings. These phenomena can occur at individual, group, organizational, or cultural levels, and in various work settings such as business, education, training, health, service, government, or military institutions. The journal welcomes submissions from both public and private sector organizations, for-profit or nonprofit. It publishes several types of articles, including:
1.Rigorously conducted empirical investigations that expand conceptual understanding (original investigations or meta-analyses).
2.Theory development articles and integrative conceptual reviews that synthesize literature and generate new theories on psychological phenomena to stimulate novel research.
3.Rigorously conducted qualitative research on phenomena that are challenging to capture with quantitative methods or require inductive theory building.