粘细菌光敏色素在低温和室温下的高分辨率晶体结构。

IF 2.3 2区 物理与天体物理 Q3 CHEMISTRY, PHYSICAL Structural Dynamics-Us Pub Date : 2019-09-17 eCollection Date: 2019-09-01 DOI:10.1063/1.5120527
Juan C Sanchez, Melissa Carrillo, Suraj Pandey, Moraima Noda, Luis Aldama, Denisse Feliz, Elin Claesson, Weixiao Yuan Wahlgren, Gregory Tracy, Phu Duong, Angela C Nugent, Andrew Field, Vukica Šrajer, Christopher Kupitz, So Iwata, Eriko Nango, Rie Tanaka, Tomoyuki Tanaka, Luo Fangjia, Kensuke Tono, Shigeki Owada, Sebastian Westenhoff, Marius Schmidt, Emina A Stojković
{"title":"粘细菌光敏色素在低温和室温下的高分辨率晶体结构。","authors":"Juan C Sanchez, Melissa Carrillo, Suraj Pandey, Moraima Noda, Luis Aldama, Denisse Feliz, Elin Claesson, Weixiao Yuan Wahlgren, Gregory Tracy, Phu Duong, Angela C Nugent, Andrew Field, Vukica Šrajer, Christopher Kupitz, So Iwata, Eriko Nango, Rie Tanaka, Tomoyuki Tanaka, Luo Fangjia, Kensuke Tono, Shigeki Owada, Sebastian Westenhoff, Marius Schmidt, Emina A Stojković","doi":"10.1063/1.5120527","DOIUrl":null,"url":null,"abstract":"<p><p>Phytochromes (PHYs) are photoreceptor proteins first discovered in plants, where they control a variety of photomorphogenesis events. PHYs as photochromic proteins can reversibly switch between two distinct states: a red light (Pr) and a far-red light (Pfr) absorbing form. The discovery of Bacteriophytochromes (BphPs) in nonphotosynthetic bacteria has opened new frontiers in our understanding of the mechanisms by which these natural photoswitches can control single cell development, although the role of BphPs <i>in vivo</i> remains largely unknown. BphPs are dimeric proteins that consist of a photosensory core module (PCM) and an enzymatic domain, often a histidine kinase. The PCM is composed of three domains (PAS, GAF, and PHY). It holds a covalently bound open-chain tetrapyrrole (biliverdin, BV) chromophore. Upon absorption of light, the double bond between BV rings C and D isomerizes and reversibly switches the protein between Pr and Pfr states. We report crystal structures of the wild-type and mutant (His275Thr) forms of the canonical BphP from the nonphotosynthetic myxobacterium <i>Stigmatella aurantiaca</i> (<i>Sa</i>BphP2) in the Pr state. Structures were determined at 1.65 Å and 2.2 Å (respectively), the highest resolution of any PCM construct to date. We also report the room temperature wild-type structure of the same protein determined at 2.1 Å at the SPring-8 Angstrom Compact free electron LAser (SACLA), Japan. Our results not only highlight and confirm important amino acids near the chromophore that play a role in Pr-Pfr photoconversion but also describe the signal transduction into the PHY domain which moves across tens of angstroms after the light stimulus.</p>","PeriodicalId":48683,"journal":{"name":"Structural Dynamics-Us","volume":"6 5","pages":"054701"},"PeriodicalIF":2.3000,"publicationDate":"2019-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6748860/pdf/","citationCount":"0","resultStr":"{\"title\":\"High-resolution crystal structures of a myxobacterial phytochrome at cryo and room temperatures.\",\"authors\":\"Juan C Sanchez, Melissa Carrillo, Suraj Pandey, Moraima Noda, Luis Aldama, Denisse Feliz, Elin Claesson, Weixiao Yuan Wahlgren, Gregory Tracy, Phu Duong, Angela C Nugent, Andrew Field, Vukica Šrajer, Christopher Kupitz, So Iwata, Eriko Nango, Rie Tanaka, Tomoyuki Tanaka, Luo Fangjia, Kensuke Tono, Shigeki Owada, Sebastian Westenhoff, Marius Schmidt, Emina A Stojković\",\"doi\":\"10.1063/1.5120527\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Phytochromes (PHYs) are photoreceptor proteins first discovered in plants, where they control a variety of photomorphogenesis events. PHYs as photochromic proteins can reversibly switch between two distinct states: a red light (Pr) and a far-red light (Pfr) absorbing form. The discovery of Bacteriophytochromes (BphPs) in nonphotosynthetic bacteria has opened new frontiers in our understanding of the mechanisms by which these natural photoswitches can control single cell development, although the role of BphPs <i>in vivo</i> remains largely unknown. BphPs are dimeric proteins that consist of a photosensory core module (PCM) and an enzymatic domain, often a histidine kinase. The PCM is composed of three domains (PAS, GAF, and PHY). It holds a covalently bound open-chain tetrapyrrole (biliverdin, BV) chromophore. Upon absorption of light, the double bond between BV rings C and D isomerizes and reversibly switches the protein between Pr and Pfr states. We report crystal structures of the wild-type and mutant (His275Thr) forms of the canonical BphP from the nonphotosynthetic myxobacterium <i>Stigmatella aurantiaca</i> (<i>Sa</i>BphP2) in the Pr state. Structures were determined at 1.65 Å and 2.2 Å (respectively), the highest resolution of any PCM construct to date. We also report the room temperature wild-type structure of the same protein determined at 2.1 Å at the SPring-8 Angstrom Compact free electron LAser (SACLA), Japan. Our results not only highlight and confirm important amino acids near the chromophore that play a role in Pr-Pfr photoconversion but also describe the signal transduction into the PHY domain which moves across tens of angstroms after the light stimulus.</p>\",\"PeriodicalId\":48683,\"journal\":{\"name\":\"Structural Dynamics-Us\",\"volume\":\"6 5\",\"pages\":\"054701\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2019-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6748860/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Dynamics-Us\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/1.5120527\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2019/9/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Dynamics-Us","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/1.5120527","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/9/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

光敏色素(PHY)是最早在植物中发现的感光蛋白,它们控制着各种光形态发生事件。PHY作为光致变色蛋白可以在两种不同的状态之间可逆地切换:红光(Pr)和远红光(Pfr)吸收形式。在非光合成细菌中发现细菌光敏色素(BphPs)为我们理解这些天然光开关控制单细胞发育的机制开辟了新的领域,尽管BphPs在体内的作用在很大程度上仍是未知的。BphPs是由光敏核心模块(PCM)和酶结构域(通常是组氨酸激酶)组成的二聚体蛋白质。PCM由三个域(PAS、GAF和PHY)组成。它持有共价结合的开链四吡咯(胆绿素,BV)发色团。在吸收光时,BV环C和D之间的双键异构化,并可逆地在Pr和Pfr状态之间切换蛋白质。我们报道了Pr状态下非光合成粘细菌Aurantica Stigmatella(SaBphP2)的经典BphP的野生型和突变体(His275Thr)形式的晶体结构。结构确定为1.65 Å和2.2 Å(分别),是迄今为止任何PCM构建体的最高分辨率。我们还报道了在2.1测定的相同蛋白质的室温野生型结构 Å。我们的结果不仅强调并证实了发色团附近在Pr-Pfr光转换中起作用的重要氨基酸,而且描述了光刺激后进入PHY结构域的信号转导,该结构域移动了几十埃。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
High-resolution crystal structures of a myxobacterial phytochrome at cryo and room temperatures.

Phytochromes (PHYs) are photoreceptor proteins first discovered in plants, where they control a variety of photomorphogenesis events. PHYs as photochromic proteins can reversibly switch between two distinct states: a red light (Pr) and a far-red light (Pfr) absorbing form. The discovery of Bacteriophytochromes (BphPs) in nonphotosynthetic bacteria has opened new frontiers in our understanding of the mechanisms by which these natural photoswitches can control single cell development, although the role of BphPs in vivo remains largely unknown. BphPs are dimeric proteins that consist of a photosensory core module (PCM) and an enzymatic domain, often a histidine kinase. The PCM is composed of three domains (PAS, GAF, and PHY). It holds a covalently bound open-chain tetrapyrrole (biliverdin, BV) chromophore. Upon absorption of light, the double bond between BV rings C and D isomerizes and reversibly switches the protein between Pr and Pfr states. We report crystal structures of the wild-type and mutant (His275Thr) forms of the canonical BphP from the nonphotosynthetic myxobacterium Stigmatella aurantiaca (SaBphP2) in the Pr state. Structures were determined at 1.65 Å and 2.2 Å (respectively), the highest resolution of any PCM construct to date. We also report the room temperature wild-type structure of the same protein determined at 2.1 Å at the SPring-8 Angstrom Compact free electron LAser (SACLA), Japan. Our results not only highlight and confirm important amino acids near the chromophore that play a role in Pr-Pfr photoconversion but also describe the signal transduction into the PHY domain which moves across tens of angstroms after the light stimulus.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Structural Dynamics-Us
Structural Dynamics-Us CHEMISTRY, PHYSICALPHYSICS, ATOMIC, MOLECU-PHYSICS, ATOMIC, MOLECULAR & CHEMICAL
CiteScore
5.50
自引率
3.60%
发文量
24
审稿时长
16 weeks
期刊介绍: Structural Dynamics focuses on the recent developments in experimental and theoretical methods and techniques that allow a visualization of the electronic and geometric structural changes in real time of chemical, biological, and condensed-matter systems. The community of scientists and engineers working on structural dynamics in such diverse systems often use similar instrumentation and methods. The journal welcomes articles dealing with fundamental problems of electronic and structural dynamics that are tackled by new methods, such as: Time-resolved X-ray and electron diffraction and scattering, Coherent diffractive imaging, Time-resolved X-ray spectroscopies (absorption, emission, resonant inelastic scattering, etc.), Time-resolved electron energy loss spectroscopy (EELS) and electron microscopy, Time-resolved photoelectron spectroscopies (UPS, XPS, ARPES, etc.), Multidimensional spectroscopies in the infrared, the visible and the ultraviolet, Nonlinear spectroscopies in the VUV, the soft and the hard X-ray domains, Theory and computational methods and algorithms for the analysis and description of structuraldynamics and their associated experimental signals. These new methods are enabled by new instrumentation, such as: X-ray free electron lasers, which provide flux, coherence, and time resolution, New sources of ultrashort electron pulses, New sources of ultrashort vacuum ultraviolet (VUV) to hard X-ray pulses, such as high-harmonic generation (HHG) sources or plasma-based sources, New sources of ultrashort infrared and terahertz (THz) radiation, New detectors for X-rays and electrons, New sample handling and delivery schemes, New computational capabilities.
期刊最新文献
Structure and spin of the low- and high-spin states of Fe2+(phen)3 studied by x-ray scattering and emission spectroscopy. Ultrafast energy-dispersive soft-x-ray diffraction in the water window with a laser-driven source. Laue-DIALS: Open-source software for polychromatic x-ray diffraction data. Spatiotemporal determination of photoinduced strain in a Weyl semimetal. High-repetition-rate ultrafast electron diffraction with direct electron detection.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1