Yufei Gong, Tianwei Zou, Xiaojun Li, Hongmei Zhuo, Shucheng Qin, Guangpei Sun, Lei Meng, Yongfang Li
{"title":"引入烷氧基作为π桥的外侧链和取代基,获得高性能的中带隙聚合小分子受体","authors":"Yufei Gong, Tianwei Zou, Xiaojun Li, Hongmei Zhuo, Shucheng Qin, Guangpei Sun, Lei Meng, Yongfang Li","doi":"10.1007/s11426-023-1773-0","DOIUrl":null,"url":null,"abstract":"<div><p>The medium-bandgap polymerized small molecule acceptors (PSMAs) have broad application scenarios. However, the effort in the molecular design of the high-performance medium-bandgap PSMAs is limited. In this article, we introduce alkoxy groups as outer side chains and as substituents of the thiophene <i>π</i>-bridges of the high-performance PSMA PY-IT to synthesize a medium-bandgap PSMA PO-TO. Due to that the non-covalent interaction between the alkoxy groups and the terminal groups of the small molecule acceptor (SMA) unit can weaken the intramolecular charge transfer (ICT) effect, the bandgap of PO-TO is enlarged and its absorption is blue-shifted compared with PY-IT, while the absorbance of PO-TO solution and film is enhanced significantly compare with that of PY-IT. When blended PO-TO with the polymer donor PBQx-TF, the corresponding all-polymer solar cells (all-PSCs) exhibit an open-circuit voltage (<i>V</i><sub>oc</sub>) exceeding 1.04 V with a power conversion efficiency (PCE) of 13.75%. Furthermore, PO-TO was used as the third component to fabricate ternary all-PSCs with PBQx-TF as the polymer donor and PY-IT as the main polymer acceptor, and the ternary all-PSCs based on PBQx-TF:PY-IT:PO-TO (1:1:0.2, <i>w/w/w</i>) demonstrated a high PCE of 17.71% with simultaneously improved <i>V</i><sub>oc</sub> of 0.940 V, short-circuit current density (<i>J</i><sub>sc</sub>) of 24.60 mA cm<sup>−2</sup> and fill factor (FF) of 76.81%. In comparison, the binary all-PSCs based on PBQx-TF:PY-IT showed a PCE of 16.77%. This result indicates that introducing alkoxy groups is a promising strategy for synthesizing high-performance medium-bandgap PSMAs.</p><figure><div><div><div><picture><source><img></source></picture></div></div></div></figure></div>","PeriodicalId":772,"journal":{"name":"Science China Chemistry","volume":"66 10","pages":"2912 - 2920"},"PeriodicalIF":10.4000,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Introducing alkoxy groups as outer side chains and substituents of π-bridges obtains high-performance medium-bandgap polymerized small molecule acceptors\",\"authors\":\"Yufei Gong, Tianwei Zou, Xiaojun Li, Hongmei Zhuo, Shucheng Qin, Guangpei Sun, Lei Meng, Yongfang Li\",\"doi\":\"10.1007/s11426-023-1773-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The medium-bandgap polymerized small molecule acceptors (PSMAs) have broad application scenarios. However, the effort in the molecular design of the high-performance medium-bandgap PSMAs is limited. In this article, we introduce alkoxy groups as outer side chains and as substituents of the thiophene <i>π</i>-bridges of the high-performance PSMA PY-IT to synthesize a medium-bandgap PSMA PO-TO. Due to that the non-covalent interaction between the alkoxy groups and the terminal groups of the small molecule acceptor (SMA) unit can weaken the intramolecular charge transfer (ICT) effect, the bandgap of PO-TO is enlarged and its absorption is blue-shifted compared with PY-IT, while the absorbance of PO-TO solution and film is enhanced significantly compare with that of PY-IT. When blended PO-TO with the polymer donor PBQx-TF, the corresponding all-polymer solar cells (all-PSCs) exhibit an open-circuit voltage (<i>V</i><sub>oc</sub>) exceeding 1.04 V with a power conversion efficiency (PCE) of 13.75%. Furthermore, PO-TO was used as the third component to fabricate ternary all-PSCs with PBQx-TF as the polymer donor and PY-IT as the main polymer acceptor, and the ternary all-PSCs based on PBQx-TF:PY-IT:PO-TO (1:1:0.2, <i>w/w/w</i>) demonstrated a high PCE of 17.71% with simultaneously improved <i>V</i><sub>oc</sub> of 0.940 V, short-circuit current density (<i>J</i><sub>sc</sub>) of 24.60 mA cm<sup>−2</sup> and fill factor (FF) of 76.81%. In comparison, the binary all-PSCs based on PBQx-TF:PY-IT showed a PCE of 16.77%. This result indicates that introducing alkoxy groups is a promising strategy for synthesizing high-performance medium-bandgap PSMAs.</p><figure><div><div><div><picture><source><img></source></picture></div></div></div></figure></div>\",\"PeriodicalId\":772,\"journal\":{\"name\":\"Science China Chemistry\",\"volume\":\"66 10\",\"pages\":\"2912 - 2920\"},\"PeriodicalIF\":10.4000,\"publicationDate\":\"2023-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science China Chemistry\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11426-023-1773-0\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Chemistry","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.1007/s11426-023-1773-0","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Introducing alkoxy groups as outer side chains and substituents of π-bridges obtains high-performance medium-bandgap polymerized small molecule acceptors
The medium-bandgap polymerized small molecule acceptors (PSMAs) have broad application scenarios. However, the effort in the molecular design of the high-performance medium-bandgap PSMAs is limited. In this article, we introduce alkoxy groups as outer side chains and as substituents of the thiophene π-bridges of the high-performance PSMA PY-IT to synthesize a medium-bandgap PSMA PO-TO. Due to that the non-covalent interaction between the alkoxy groups and the terminal groups of the small molecule acceptor (SMA) unit can weaken the intramolecular charge transfer (ICT) effect, the bandgap of PO-TO is enlarged and its absorption is blue-shifted compared with PY-IT, while the absorbance of PO-TO solution and film is enhanced significantly compare with that of PY-IT. When blended PO-TO with the polymer donor PBQx-TF, the corresponding all-polymer solar cells (all-PSCs) exhibit an open-circuit voltage (Voc) exceeding 1.04 V with a power conversion efficiency (PCE) of 13.75%. Furthermore, PO-TO was used as the third component to fabricate ternary all-PSCs with PBQx-TF as the polymer donor and PY-IT as the main polymer acceptor, and the ternary all-PSCs based on PBQx-TF:PY-IT:PO-TO (1:1:0.2, w/w/w) demonstrated a high PCE of 17.71% with simultaneously improved Voc of 0.940 V, short-circuit current density (Jsc) of 24.60 mA cm−2 and fill factor (FF) of 76.81%. In comparison, the binary all-PSCs based on PBQx-TF:PY-IT showed a PCE of 16.77%. This result indicates that introducing alkoxy groups is a promising strategy for synthesizing high-performance medium-bandgap PSMAs.
期刊介绍:
Science China Chemistry, co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China and published by Science China Press, publishes high-quality original research in both basic and applied chemistry. Indexed by Science Citation Index, it is a premier academic journal in the field.
Categories of articles include:
Highlights. Brief summaries and scholarly comments on recent research achievements in any field of chemistry.
Perspectives. Concise reports on thelatest chemistry trends of interest to scientists worldwide, including discussions of research breakthroughs and interpretations of important science and funding policies.
Reviews. In-depth summaries of representative results and achievements of the past 5–10 years in selected topics based on or closely related to the research expertise of the authors, providing a thorough assessment of the significance, current status, and future research directions of the field.