具有无限相关长度的确定Wigner输运方程求解器

IF 2.2 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Journal of Computational Electronics Pub Date : 2023-07-11 DOI:10.1007/s10825-023-02079-9
Kyoung Yeon Kim
{"title":"具有无限相关长度的确定Wigner输运方程求解器","authors":"Kyoung Yeon Kim","doi":"10.1007/s10825-023-02079-9","DOIUrl":null,"url":null,"abstract":"<div><p>We propose a new formulation of the Wigner transport equation (WTE) with infinite correlation length. Since the maximum correlation length is not limited to a finite value, there is no uncertainty in the simulation results owing to the finite integral range of the nonlocal potential term. For general and efficient simulation, the proposed WTE formulation is solved self-consistently with the Poisson equation through the finite volume method and the fully coupled Newton–Raphson scheme. Through this, we implemented a quantum transport steady state and transient simulator with excellent convergence.</p></div>","PeriodicalId":620,"journal":{"name":"Journal of Computational Electronics","volume":"22 5","pages":"1377 - 1395"},"PeriodicalIF":2.2000,"publicationDate":"2023-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A deterministic Wigner transport equation solver with infinite correlation length\",\"authors\":\"Kyoung Yeon Kim\",\"doi\":\"10.1007/s10825-023-02079-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We propose a new formulation of the Wigner transport equation (WTE) with infinite correlation length. Since the maximum correlation length is not limited to a finite value, there is no uncertainty in the simulation results owing to the finite integral range of the nonlocal potential term. For general and efficient simulation, the proposed WTE formulation is solved self-consistently with the Poisson equation through the finite volume method and the fully coupled Newton–Raphson scheme. Through this, we implemented a quantum transport steady state and transient simulator with excellent convergence.</p></div>\",\"PeriodicalId\":620,\"journal\":{\"name\":\"Journal of Computational Electronics\",\"volume\":\"22 5\",\"pages\":\"1377 - 1395\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10825-023-02079-9\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10825-023-02079-9","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 1

摘要

我们提出了一个具有无限相关长度的Wigner输运方程的新公式。由于最大相关长度不限于有限值,因此由于非局部势项的积分范围有限,模拟结果不存在不确定性。为了进行一般有效的模拟,通过有限体积法和完全耦合的牛顿-拉斐森格式,将所提出的WTE公式与泊松方程自洽求解。通过此,我们实现了一个具有良好收敛性的量子输运稳态和瞬态模拟器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A deterministic Wigner transport equation solver with infinite correlation length

We propose a new formulation of the Wigner transport equation (WTE) with infinite correlation length. Since the maximum correlation length is not limited to a finite value, there is no uncertainty in the simulation results owing to the finite integral range of the nonlocal potential term. For general and efficient simulation, the proposed WTE formulation is solved self-consistently with the Poisson equation through the finite volume method and the fully coupled Newton–Raphson scheme. Through this, we implemented a quantum transport steady state and transient simulator with excellent convergence.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computational Electronics
Journal of Computational Electronics ENGINEERING, ELECTRICAL & ELECTRONIC-PHYSICS, APPLIED
CiteScore
4.50
自引率
4.80%
发文量
142
审稿时长
>12 weeks
期刊介绍: he Journal of Computational Electronics brings together research on all aspects of modeling and simulation of modern electronics. This includes optical, electronic, mechanical, and quantum mechanical aspects, as well as research on the underlying mathematical algorithms and computational details. The related areas of energy conversion/storage and of molecular and biological systems, in which the thrust is on the charge transport, electronic, mechanical, and optical properties, are also covered. In particular, we encourage manuscripts dealing with device simulation; with optical and optoelectronic systems and photonics; with energy storage (e.g. batteries, fuel cells) and harvesting (e.g. photovoltaic), with simulation of circuits, VLSI layout, logic and architecture (based on, for example, CMOS devices, quantum-cellular automata, QBITs, or single-electron transistors); with electromagnetic simulations (such as microwave electronics and components); or with molecular and biological systems. However, in all these cases, the submitted manuscripts should explicitly address the electronic properties of the relevant systems, materials, or devices and/or present novel contributions to the physical models, computational strategies, or numerical algorithms.
期刊最新文献
Study of the ISO-FDTD algorithm for processing higher-order dielectric function in SF-FDTD UTC-PD's optoelectronic mixing principle and optimal working condition Low-profile MIMO antenna for sub-6G smartphone applications with minimal footprint: an SVM-guided approach Impact of in-plane electric field on the optical properties of CO2 adsorbed 2D MoSe2 monolayer: application as a photodetector Empirical mathematical model based on optimized parameter extraction from captured electrohydrodynamic inkjet memristor device with LTspice model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1