{"title":"模拟铝热剂反应过程中热力学和动力学参数的全因子设计分析","authors":"Kesiany M. de Souza, Marcelo J. S. de Lemos","doi":"10.1007/s00161-023-01243-7","DOIUrl":null,"url":null,"abstract":"<div><p>This research investigates the effects of thermodynamic and kinetic parameters on simulated Fe<span>\\(_{{2}}\\)</span>O<span>\\(_{{3}}\\)</span>–2Al thermite reaction propagation. For that, a full-factorial design was applied. Five parameters were investigated: mixture density (A), thermal conductivity (B), specific heat (C), activation energy (D), and pre-exponential factor (E). Among these factors investigated, the activation energy, the specific heat, and their two-factor interaction had by far the highest percentage contribution of effects in the five responses observed: burning velocity, thickness of the reaction zone, peak temperature, ignition temperature, and ignition delay. Higher activation energy and specific heat resulted in a slower and thicker reaction propagation wave that required a longer time to ignite and reached a lower peak temperature. However, while activation energy affected the ignition temperature positively, the specific heat presented a negative effect. The remaining parameters had less pronounced effects but were significant in all five responses. Moreover, regression models of burning velocity, thickness, and ignition delay responses were estimated, which allowed mapping effects on these responses through contour plots of the main two-factor interactions.</p></div>","PeriodicalId":525,"journal":{"name":"Continuum Mechanics and Thermodynamics","volume":"35 6","pages":"2219 - 2238"},"PeriodicalIF":1.9000,"publicationDate":"2023-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Full factorial design analysis of thermodynamic and kinetic parameters in simulated thermite reaction propagation\",\"authors\":\"Kesiany M. de Souza, Marcelo J. S. de Lemos\",\"doi\":\"10.1007/s00161-023-01243-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This research investigates the effects of thermodynamic and kinetic parameters on simulated Fe<span>\\\\(_{{2}}\\\\)</span>O<span>\\\\(_{{3}}\\\\)</span>–2Al thermite reaction propagation. For that, a full-factorial design was applied. Five parameters were investigated: mixture density (A), thermal conductivity (B), specific heat (C), activation energy (D), and pre-exponential factor (E). Among these factors investigated, the activation energy, the specific heat, and their two-factor interaction had by far the highest percentage contribution of effects in the five responses observed: burning velocity, thickness of the reaction zone, peak temperature, ignition temperature, and ignition delay. Higher activation energy and specific heat resulted in a slower and thicker reaction propagation wave that required a longer time to ignite and reached a lower peak temperature. However, while activation energy affected the ignition temperature positively, the specific heat presented a negative effect. The remaining parameters had less pronounced effects but were significant in all five responses. Moreover, regression models of burning velocity, thickness, and ignition delay responses were estimated, which allowed mapping effects on these responses through contour plots of the main two-factor interactions.</p></div>\",\"PeriodicalId\":525,\"journal\":{\"name\":\"Continuum Mechanics and Thermodynamics\",\"volume\":\"35 6\",\"pages\":\"2219 - 2238\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Continuum Mechanics and Thermodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00161-023-01243-7\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Continuum Mechanics and Thermodynamics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00161-023-01243-7","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
Full factorial design analysis of thermodynamic and kinetic parameters in simulated thermite reaction propagation
This research investigates the effects of thermodynamic and kinetic parameters on simulated Fe\(_{{2}}\)O\(_{{3}}\)–2Al thermite reaction propagation. For that, a full-factorial design was applied. Five parameters were investigated: mixture density (A), thermal conductivity (B), specific heat (C), activation energy (D), and pre-exponential factor (E). Among these factors investigated, the activation energy, the specific heat, and their two-factor interaction had by far the highest percentage contribution of effects in the five responses observed: burning velocity, thickness of the reaction zone, peak temperature, ignition temperature, and ignition delay. Higher activation energy and specific heat resulted in a slower and thicker reaction propagation wave that required a longer time to ignite and reached a lower peak temperature. However, while activation energy affected the ignition temperature positively, the specific heat presented a negative effect. The remaining parameters had less pronounced effects but were significant in all five responses. Moreover, regression models of burning velocity, thickness, and ignition delay responses were estimated, which allowed mapping effects on these responses through contour plots of the main two-factor interactions.
期刊介绍:
This interdisciplinary journal provides a forum for presenting new ideas in continuum and quasi-continuum modeling of systems with a large number of degrees of freedom and sufficient complexity to require thermodynamic closure. Major emphasis is placed on papers attempting to bridge the gap between discrete and continuum approaches as well as micro- and macro-scales, by means of homogenization, statistical averaging and other mathematical tools aimed at the judicial elimination of small time and length scales. The journal is particularly interested in contributions focusing on a simultaneous description of complex systems at several disparate scales. Papers presenting and explaining new experimental findings are highly encouraged. The journal welcomes numerical studies aimed at understanding the physical nature of the phenomena.
Potential subjects range from boiling and turbulence to plasticity and earthquakes. Studies of fluids and solids with nonlinear and non-local interactions, multiple fields and multi-scale responses, nontrivial dissipative properties and complex dynamics are expected to have a strong presence in the pages of the journal. An incomplete list of featured topics includes: active solids and liquids, nano-scale effects and molecular structure of materials, singularities in fluid and solid mechanics, polymers, elastomers and liquid crystals, rheology, cavitation and fracture, hysteresis and friction, mechanics of solid and liquid phase transformations, composite, porous and granular media, scaling in statics and dynamics, large scale processes and geomechanics, stochastic aspects of mechanics. The journal would also like to attract papers addressing the very foundations of thermodynamics and kinetics of continuum processes. Of special interest are contributions to the emerging areas of biophysics and biomechanics of cells, bones and tissues leading to new continuum and thermodynamical models.