MiR-224-5p通过靶向Runx2和Sp7抑制成骨细胞分化并损害骨形成。

IF 2 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Cytotechnology Pub Date : 2023-12-01 Epub Date: 2023-09-05 DOI:10.1007/s10616-023-00593-z
Siyang Ding, Yunfei Ma, Jiashu Yang, Yuting Tang, Yucui Jin, Lingyun Li, Changyan Ma
{"title":"MiR-224-5p通过靶向Runx2和Sp7抑制成骨细胞分化并损害骨形成。","authors":"Siyang Ding, Yunfei Ma, Jiashu Yang, Yuting Tang, Yucui Jin, Lingyun Li, Changyan Ma","doi":"10.1007/s10616-023-00593-z","DOIUrl":null,"url":null,"abstract":"<p><p>Osteoporosis is a complicated multifactorial disorder characterized by low bone mass and deteriorated bone microarchitecture with an elevated fracture risk. MicroRNAs play important roles in osteoblastic differentiation. In the present study, we found that miR-224-5p was markedly downregulated during the osteogenic differentiation of C2C12 cells. Overexpression of miR-224-5p in C2C12 cells inhibited osteoblast activity, as indicated by reduced ALP activity, matrix mineralization and the expression of osteogenic marker genes. Moreover, we demonstrated that Runx2 and Sp7 were direct targets of miR-224-5p. Furthermore, the specific inhibition of miR-224-5p by femoral bone marrow cavity injection with miR-224-5p antagomir prevented ovariectomy-induced bone loss. Finally, we found that the levels of miR-224-5p were markedly elevated in the sera of patients with osteoporosis. Collectively, this study revealed that miR-224-5p negatively regulates osteogenic differentiation by targeting Runx2 and Sp7. It also highlights the potential use of miR-224-5p as a therapeutic target and diagnostic biomarker for osteoporosis.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s10616-023-00593-z.</p>","PeriodicalId":10890,"journal":{"name":"Cytotechnology","volume":"75 6","pages":"505-516"},"PeriodicalIF":2.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10575840/pdf/","citationCount":"0","resultStr":"{\"title\":\"MiR-224-5p inhibits osteoblast differentiation and impairs bone formation by targeting Runx2 and Sp7.\",\"authors\":\"Siyang Ding, Yunfei Ma, Jiashu Yang, Yuting Tang, Yucui Jin, Lingyun Li, Changyan Ma\",\"doi\":\"10.1007/s10616-023-00593-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Osteoporosis is a complicated multifactorial disorder characterized by low bone mass and deteriorated bone microarchitecture with an elevated fracture risk. MicroRNAs play important roles in osteoblastic differentiation. In the present study, we found that miR-224-5p was markedly downregulated during the osteogenic differentiation of C2C12 cells. Overexpression of miR-224-5p in C2C12 cells inhibited osteoblast activity, as indicated by reduced ALP activity, matrix mineralization and the expression of osteogenic marker genes. Moreover, we demonstrated that Runx2 and Sp7 were direct targets of miR-224-5p. Furthermore, the specific inhibition of miR-224-5p by femoral bone marrow cavity injection with miR-224-5p antagomir prevented ovariectomy-induced bone loss. Finally, we found that the levels of miR-224-5p were markedly elevated in the sera of patients with osteoporosis. Collectively, this study revealed that miR-224-5p negatively regulates osteogenic differentiation by targeting Runx2 and Sp7. It also highlights the potential use of miR-224-5p as a therapeutic target and diagnostic biomarker for osteoporosis.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s10616-023-00593-z.</p>\",\"PeriodicalId\":10890,\"journal\":{\"name\":\"Cytotechnology\",\"volume\":\"75 6\",\"pages\":\"505-516\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10575840/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cytotechnology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10616-023-00593-z\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/9/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytotechnology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10616-023-00593-z","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/5 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

骨质疏松症是一种复杂的多因素疾病,其特征是骨量低,骨微结构恶化,骨折风险升高。微小RNA在成骨细胞分化中起着重要作用。在本研究中,我们发现miR-224-5p在C2C12细胞的成骨分化过程中显著下调。miR-224-5p在C2C12细胞中的过表达抑制了成骨细胞的活性,如ALP活性降低、基质矿化和成骨标记基因的表达所示。此外,我们证明Runx2和Sp7是miR-224-5p的直接靶标。此外,通过股骨髓腔注射miR-224-5p安他美对miR-224-5p的特异性抑制防止了卵巢切除术诱导的骨丢失。最后,我们发现骨质疏松症患者血清中miR-224-5p的水平显著升高。总之,这项研究揭示了miR-224-5p通过靶向Runx2和Sp7负调控成骨分化。它还强调了miR-224-5p作为骨质疏松症的治疗靶点和诊断生物标志物的潜在用途。补充信息:在线版本包含补充材料,网址为10.1007/s10616-023-00593-z。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MiR-224-5p inhibits osteoblast differentiation and impairs bone formation by targeting Runx2 and Sp7.

Osteoporosis is a complicated multifactorial disorder characterized by low bone mass and deteriorated bone microarchitecture with an elevated fracture risk. MicroRNAs play important roles in osteoblastic differentiation. In the present study, we found that miR-224-5p was markedly downregulated during the osteogenic differentiation of C2C12 cells. Overexpression of miR-224-5p in C2C12 cells inhibited osteoblast activity, as indicated by reduced ALP activity, matrix mineralization and the expression of osteogenic marker genes. Moreover, we demonstrated that Runx2 and Sp7 were direct targets of miR-224-5p. Furthermore, the specific inhibition of miR-224-5p by femoral bone marrow cavity injection with miR-224-5p antagomir prevented ovariectomy-induced bone loss. Finally, we found that the levels of miR-224-5p were markedly elevated in the sera of patients with osteoporosis. Collectively, this study revealed that miR-224-5p negatively regulates osteogenic differentiation by targeting Runx2 and Sp7. It also highlights the potential use of miR-224-5p as a therapeutic target and diagnostic biomarker for osteoporosis.

Supplementary information: The online version contains supplementary material available at 10.1007/s10616-023-00593-z.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cytotechnology
Cytotechnology 生物-生物工程与应用微生物
CiteScore
4.10
自引率
0.00%
发文量
49
审稿时长
6-12 weeks
期刊介绍: The scope of the Journal includes: 1. The derivation, genetic modification and characterization of cell lines, genetic and phenotypic regulation, control of cellular metabolism, cell physiology and biochemistry related to cell function, performance and expression of cell products. 2. Cell culture techniques, substrates, environmental requirements and optimization, cloning, hybridization and molecular biology, including genomic and proteomic tools. 3. Cell culture systems, processes, reactors, scale-up, and industrial production. Descriptions of the design or construction of equipment, media or quality control procedures, that are ancillary to cellular research. 4. The application of animal/human cells in research in the field of stem cell research including maintenance of stemness, differentiation, genetics, and senescence, cancer research, research in immunology, as well as applications in tissue engineering and gene therapy. 5. The use of cell cultures as a substrate for bioassays, biomedical applications and in particular as a replacement for animal models.
期刊最新文献
AKT activation participates in Fascin-1-induced EMT in hepatoma cells. Expression and role of CTHRC1 in inflammatory bowel disease in children. Expression profiling of circular RNAs in sepsis-induced acute gastrointestinal injury: insights into potential biomarkers and mechanisms. FXYD6 is transcriptionally activated by KLF10 to suppress the aggressiveness of gastric cancer cells. BSP promotes skin wound healing by regulating the expression level of SCEL.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1