{"title":"一种用于具有L858R突变的EGFR多模式成像的新型双重标记肽。","authors":"Myoung Hyoun Kim, Seul-Gi Kim, Dae-Weung Kim","doi":"10.2174/0118744710249198231002055810","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The development of molecular imaging agents targeting epidermal growth factor receptor (EGFR) with L858R mutation may help with the selection of non-small cell lung carcinoma (NSCLCL) patients who may benefit from EFGR tyrosine kinase inhibitor (TKI) therapy.</p><p><strong>Objective: </strong>In this study, we developed <sup>99m</sup>Tc STHHYYP-GHEG-ECGK-tetramethylrhodamine (STHHYYP-ECGK-TAMRA) to target EGFR with L858R mutation in NSCLC tumors and verified its probability as a molecular imaging agent.</p><p><strong>Methods: </strong>Fmoc solid-phase peptide synthesis was used to synthesize STHHYYP-ECGKTAMRA. <sup>99m</sup>Tc labelled STHHYYP-ECGK-TAMRA was prepared. Gamma imaging, fluorescent imaging and biodistribution were performed in murine models bearing NCI-H1975 and NCI-H1650 tumors.</p><p><strong>Results: </strong>The binding affinity value (K<sub>d</sub>) of <sup>99m</sup>Tc STHHYYP-ECGK-TAMRA was estimated to be 130.6 ± 29.2 nM in NCI-H1975 cells. The gamma camera images showed a substantial uptake of <sup>99m</sup>Tc STHHYYP-ECGK-TAMRA in the NCI-H1975 tumor. The % injected dose/gram of the NCI-H1975 tumor tissue was 2.77 ± 0.70 and 3.48 ± 1.01 at 1 and 3 h, respectively.</p><p><strong>Conclusion: </strong>Specific binding of <sup>99m</sup>Tc STHHYYP-ECGK-TAMRA to L858R-mutated EGFRpositive NCI-H1975 cells and tumors was demonstrated in <i>in vivo</i> and <i>in vitro</i> studies. The results suggest that <sup>99m</sup>Tc STHHYYP-ECGK-TAMRA is a good candidate agent for dualmodality imaging targeting EGFR with L858R mutation.</p>","PeriodicalId":10991,"journal":{"name":"Current radiopharmaceuticals","volume":" ","pages":"174-183"},"PeriodicalIF":1.5000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Dual-labeled Peptide for Multimodal Imaging of EGFR with L858R Mutation.\",\"authors\":\"Myoung Hyoun Kim, Seul-Gi Kim, Dae-Weung Kim\",\"doi\":\"10.2174/0118744710249198231002055810\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The development of molecular imaging agents targeting epidermal growth factor receptor (EGFR) with L858R mutation may help with the selection of non-small cell lung carcinoma (NSCLCL) patients who may benefit from EFGR tyrosine kinase inhibitor (TKI) therapy.</p><p><strong>Objective: </strong>In this study, we developed <sup>99m</sup>Tc STHHYYP-GHEG-ECGK-tetramethylrhodamine (STHHYYP-ECGK-TAMRA) to target EGFR with L858R mutation in NSCLC tumors and verified its probability as a molecular imaging agent.</p><p><strong>Methods: </strong>Fmoc solid-phase peptide synthesis was used to synthesize STHHYYP-ECGKTAMRA. <sup>99m</sup>Tc labelled STHHYYP-ECGK-TAMRA was prepared. Gamma imaging, fluorescent imaging and biodistribution were performed in murine models bearing NCI-H1975 and NCI-H1650 tumors.</p><p><strong>Results: </strong>The binding affinity value (K<sub>d</sub>) of <sup>99m</sup>Tc STHHYYP-ECGK-TAMRA was estimated to be 130.6 ± 29.2 nM in NCI-H1975 cells. The gamma camera images showed a substantial uptake of <sup>99m</sup>Tc STHHYYP-ECGK-TAMRA in the NCI-H1975 tumor. The % injected dose/gram of the NCI-H1975 tumor tissue was 2.77 ± 0.70 and 3.48 ± 1.01 at 1 and 3 h, respectively.</p><p><strong>Conclusion: </strong>Specific binding of <sup>99m</sup>Tc STHHYYP-ECGK-TAMRA to L858R-mutated EGFRpositive NCI-H1975 cells and tumors was demonstrated in <i>in vivo</i> and <i>in vitro</i> studies. The results suggest that <sup>99m</sup>Tc STHHYYP-ECGK-TAMRA is a good candidate agent for dualmodality imaging targeting EGFR with L858R mutation.</p>\",\"PeriodicalId\":10991,\"journal\":{\"name\":\"Current radiopharmaceuticals\",\"volume\":\" \",\"pages\":\"174-183\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current radiopharmaceuticals\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0118744710249198231002055810\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current radiopharmaceuticals","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0118744710249198231002055810","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
A Novel Dual-labeled Peptide for Multimodal Imaging of EGFR with L858R Mutation.
Background: The development of molecular imaging agents targeting epidermal growth factor receptor (EGFR) with L858R mutation may help with the selection of non-small cell lung carcinoma (NSCLCL) patients who may benefit from EFGR tyrosine kinase inhibitor (TKI) therapy.
Objective: In this study, we developed 99mTc STHHYYP-GHEG-ECGK-tetramethylrhodamine (STHHYYP-ECGK-TAMRA) to target EGFR with L858R mutation in NSCLC tumors and verified its probability as a molecular imaging agent.
Methods: Fmoc solid-phase peptide synthesis was used to synthesize STHHYYP-ECGKTAMRA. 99mTc labelled STHHYYP-ECGK-TAMRA was prepared. Gamma imaging, fluorescent imaging and biodistribution were performed in murine models bearing NCI-H1975 and NCI-H1650 tumors.
Results: The binding affinity value (Kd) of 99mTc STHHYYP-ECGK-TAMRA was estimated to be 130.6 ± 29.2 nM in NCI-H1975 cells. The gamma camera images showed a substantial uptake of 99mTc STHHYYP-ECGK-TAMRA in the NCI-H1975 tumor. The % injected dose/gram of the NCI-H1975 tumor tissue was 2.77 ± 0.70 and 3.48 ± 1.01 at 1 and 3 h, respectively.
Conclusion: Specific binding of 99mTc STHHYYP-ECGK-TAMRA to L858R-mutated EGFRpositive NCI-H1975 cells and tumors was demonstrated in in vivo and in vitro studies. The results suggest that 99mTc STHHYYP-ECGK-TAMRA is a good candidate agent for dualmodality imaging targeting EGFR with L858R mutation.