高阶神经网络在线梯度法的收敛性分析及其稀疏优化。

IF 10.2 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE IEEE transactions on neural networks and learning systems Pub Date : 2023-10-17 DOI:10.1109/TNNLS.2023.3319989
Qinwei Fan, Qian Kang, Jacek M Zurada, Tingwen Huang, Dongpo Xu
{"title":"高阶神经网络在线梯度法的收敛性分析及其稀疏优化。","authors":"Qinwei Fan, Qian Kang, Jacek M Zurada, Tingwen Huang, Dongpo Xu","doi":"10.1109/TNNLS.2023.3319989","DOIUrl":null,"url":null,"abstract":"<p><p>In this article, we investigate the boundedness and convergence of the online gradient method with the smoothing group L<sub>1/2</sub> regularization for the sigma-pi-sigma neural network (SPSNN). This enhances the sparseness of the network and improves its generalization ability. For the original group L<sub>1/2</sub> regularization, the error function is nonconvex and nonsmooth, which can cause oscillation of the error function. To ameliorate this drawback, we propose a simple and effective smoothing technique, which can effectively eliminate the deficiency of the original group L<sub>1/2</sub> regularization. The group L<sub>1/2</sub> regularization effectively optimizes the network structure from two aspects redundant hidden nodes tending to zero and redundant weights of surviving hidden nodes in the network tending to zero. This article shows the strong and weak convergence results for the proposed method and proves the boundedness of weights. Experiment results clearly demonstrate the capability of the proposed method and the effectiveness of redundancy control. The simulation results are observed to support the theoretical results.</p>","PeriodicalId":13303,"journal":{"name":"IEEE transactions on neural networks and learning systems","volume":"PP ","pages":""},"PeriodicalIF":10.2000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convergence Analysis of Online Gradient Method for High-Order Neural Networks and Their Sparse Optimization.\",\"authors\":\"Qinwei Fan, Qian Kang, Jacek M Zurada, Tingwen Huang, Dongpo Xu\",\"doi\":\"10.1109/TNNLS.2023.3319989\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this article, we investigate the boundedness and convergence of the online gradient method with the smoothing group L<sub>1/2</sub> regularization for the sigma-pi-sigma neural network (SPSNN). This enhances the sparseness of the network and improves its generalization ability. For the original group L<sub>1/2</sub> regularization, the error function is nonconvex and nonsmooth, which can cause oscillation of the error function. To ameliorate this drawback, we propose a simple and effective smoothing technique, which can effectively eliminate the deficiency of the original group L<sub>1/2</sub> regularization. The group L<sub>1/2</sub> regularization effectively optimizes the network structure from two aspects redundant hidden nodes tending to zero and redundant weights of surviving hidden nodes in the network tending to zero. This article shows the strong and weak convergence results for the proposed method and proves the boundedness of weights. Experiment results clearly demonstrate the capability of the proposed method and the effectiveness of redundancy control. The simulation results are observed to support the theoretical results.</p>\",\"PeriodicalId\":13303,\"journal\":{\"name\":\"IEEE transactions on neural networks and learning systems\",\"volume\":\"PP \",\"pages\":\"\"},\"PeriodicalIF\":10.2000,\"publicationDate\":\"2023-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on neural networks and learning systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1109/TNNLS.2023.3319989\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on neural networks and learning systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/TNNLS.2023.3319989","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们研究了sigma-pi-sigma神经网络(SPSNN)的具有光滑群L1/2正则化的在线梯度方法的有界性和收敛性。这增强了网络的稀疏性并提高了其泛化能力。对于原始群L1/2正则化,误差函数是非凸和非光滑的,这会引起误差函数的振荡。为了改善这一缺点,我们提出了一种简单有效的平滑技术,该技术可以有效地消除原始组L1/2正则化的不足。群L1/2正则化从冗余隐藏节点趋于零和网络中幸存隐藏节点的冗余权值趋于零两个方面有效地优化了网络结构。本文给出了该方法的强收敛性和弱收敛性结果,并证明了权值的有界性。实验结果清楚地证明了所提出的方法的能力和冗余控制的有效性。仿真结果支持了理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Convergence Analysis of Online Gradient Method for High-Order Neural Networks and Their Sparse Optimization.

In this article, we investigate the boundedness and convergence of the online gradient method with the smoothing group L1/2 regularization for the sigma-pi-sigma neural network (SPSNN). This enhances the sparseness of the network and improves its generalization ability. For the original group L1/2 regularization, the error function is nonconvex and nonsmooth, which can cause oscillation of the error function. To ameliorate this drawback, we propose a simple and effective smoothing technique, which can effectively eliminate the deficiency of the original group L1/2 regularization. The group L1/2 regularization effectively optimizes the network structure from two aspects redundant hidden nodes tending to zero and redundant weights of surviving hidden nodes in the network tending to zero. This article shows the strong and weak convergence results for the proposed method and proves the boundedness of weights. Experiment results clearly demonstrate the capability of the proposed method and the effectiveness of redundancy control. The simulation results are observed to support the theoretical results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE transactions on neural networks and learning systems
IEEE transactions on neural networks and learning systems COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
CiteScore
23.80
自引率
9.60%
发文量
2102
审稿时长
3-8 weeks
期刊介绍: The focus of IEEE Transactions on Neural Networks and Learning Systems is to present scholarly articles discussing the theory, design, and applications of neural networks as well as other learning systems. The journal primarily highlights technical and scientific research in this domain.
期刊最新文献
Alleviate the Impact of Heterogeneity in Network Alignment From Community View Hierarchical Contrastive Learning for Semantic Segmentation Distributed Online Convex Optimization With Statistical Privacy Beyond Euclidean Structures: Collaborative Topological Graph Learning for Multiview Clustering Rethinking Image Skip Connections in StyleGAN2
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1